已知橢圓的方程為,雙曲線的左、右焦點(diǎn)分別為的左、右頂點(diǎn),而的左、右頂點(diǎn)分別是的左、右焦點(diǎn)。
(1)求雙曲線的方程;
(2)若直線與橢圓及雙曲線都恒有兩個(gè)不同的交點(diǎn),且L與的兩個(gè)焦點(diǎn)A和B滿足(其中O為原點(diǎn)),求的取值范圍。
(1);(2)

試題分析:(1)有橢圓方程中讀出其長(zhǎng)軸長(zhǎng),焦距長(zhǎng),根據(jù)題意得出雙曲線的長(zhǎng)軸長(zhǎng),和焦距長(zhǎng),即可求出雙曲線方程。(2)因?yàn)橹本l與兩曲線均有兩個(gè)不同交點(diǎn),故聯(lián)立方程后整理出的一元二次方程均有兩根,即判別式均大于0,再根據(jù)向量數(shù)量積公式列出關(guān)于K 的不等式,三個(gè)不等式取交集。
試題解析:(1)設(shè)雙曲線的方程為,由橢圓的方程知,其長(zhǎng)軸長(zhǎng)為4,焦距長(zhǎng)為,則由題意知雙曲線,,所以,故的方程為。
(2)將代入,整理得,由直線與橢圓恒有兩個(gè)不同的交點(diǎn)得
代入,整理得,由直線與雙曲線恒有兩個(gè)不同的交點(diǎn)得,解得。


解此不等式得
       ③
由①、②、③得
故k的取值范圍為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,橢圓上的點(diǎn)滿足,且△的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),直線與直線的交點(diǎn)為,證明:點(diǎn)總在直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)焦點(diǎn)為,過點(diǎn)且垂直于長(zhǎng)軸的直線被橢圓截得的弦長(zhǎng)為為橢圓上的四個(gè)點(diǎn)。
(Ⅰ)求橢圓的方程;
(Ⅱ)若,,求四邊形的面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知的兩頂點(diǎn)坐標(biāo),,圓的內(nèi)切圓,在邊上的切點(diǎn)分別為,(從圓外一點(diǎn)到圓的兩條切線段長(zhǎng)相等),動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;
(2)設(shè)直線與曲線的另一交點(diǎn)為,當(dāng)點(diǎn)在以線段為直徑的圓上時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校同學(xué)設(shè)計(jì)一個(gè)如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中、是過拋物線焦點(diǎn)的兩條弦,且其焦點(diǎn),,點(diǎn)軸上一點(diǎn),記,其中為銳角.

(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓錐曲線的兩個(gè)焦點(diǎn)坐標(biāo)是,且離心率為
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).

(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),是常數(shù)),且動(dòng)點(diǎn)軸的距離比到點(diǎn)的距離小.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時(shí),拋物線上是否存在異于、的點(diǎn),使得經(jīng)過、、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),橢圓的離心率.

(1)求橢圓的方程;
(2)過點(diǎn)作兩直線與橢圓分別交于相異兩點(diǎn)、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請(qǐng)給予證明;若不是, 請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案