(本小題滿分14分)
已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:      (

(1),根據(jù)題意,即 …………………………………3分
(2)由(Ⅰ)知,,……………………………………………………4分
,
=  ………………………………………5分
①當(dāng)時(shí), ,
,則,為減函數(shù),存在,
上不恒成立.                   ………………………………………6分
時(shí),,當(dāng)時(shí),,增函數(shù),又,
,∴恒成立.             …………………………………………7分
綜上所述,所求的取值范圍是 ………………………………………………………………8分
(3)有(Ⅱ)知當(dāng)時(shí),上恒成立.取 …………9分
,, 
 …………………………………10分
 ……………………………………………………11分
上式中令n=1,2,3,…,n,并注意到:
然后n個(gè)不等式相加得到 ………………………………14分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知其中是自然對(duì)數(shù)的底 .
(1)若處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),存在,使得成立,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式,其中為常數(shù),已知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中
在x=1處取得極值,求a的值;
的單調(diào)區(qū)間;
(Ⅲ)若的最小值為1,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù),,其中R.
(1)當(dāng)a=1時(shí),判斷的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),當(dāng)時(shí),若,總有
成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)=.
(1)求函數(shù)在區(qū)間上的值域T;
(2)是否存在實(shí)數(shù),對(duì)任意給定的集合T中的元素t,在區(qū)間上總存在兩個(gè)不同的,使得成立.若存在,求出的取值范圍;若不存在,請(qǐng)說明理由;
(3
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)).
(I)當(dāng)時(shí),求在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知是定義在上的奇函數(shù),當(dāng)時(shí)
(1)求的解析式;
(2)是否存在實(shí)數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù):
(1)證明:++2=0對(duì)定義域內(nèi)的所有都成立;
(2)當(dāng)的定義域?yàn)閇+,+1]時(shí),求證:的值域?yàn)閇-3,-2];
(3)若,函數(shù)=x2+|(x-) | ,求的最小值

查看答案和解析>>

同步練習(xí)冊(cè)答案