如圖,直四棱柱中,底面是直角梯形,,,.
(1)求證:是二面角的平面角;
(2)在上是否存一點,使得與平面與平面都平行?證明你的結(jié)論.
(1)見解析(2) 存在點,為的中點,證明見解析
解析試題分析:(1) 直棱柱中,⊥平面,
. ……2分
又,,
∴,∴. ……5分
∴平面,∴
是二面角的平面角. ……7分
(2)存在點,為的中點. ……8分
由為的中點,有,且.
又∵,, ,且,
∴為平行四邊形,從而. ……11分
又面, 面,面. …… 12分
同理,面. …… 14分
考點:本題主要考查直線與平面、平面與平面的位置關(guān)系,考查空間想象能力、推理論證能力.
點評:證明一個問題,首先要分析需要什么條件,需要用到什么定理,然后把需要用到的定理的條件一一列舉出來,缺一不可,數(shù)學(xué)證明題必須嚴(yán)謹(jǐn).
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P﹣ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB.
(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關(guān)系,并證明結(jié)論;
(3)若AB=2,求三棱錐B﹣CED的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某高速公路收費站入口處的安全標(biāo)識墩如圖4所示,墩的上半部分是側(cè)面全等的四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.圖5、圖6分別是該標(biāo)識墩的正(主)視圖和俯視圖.
(Ⅰ)求該安全標(biāo)識墩的體積;
(Ⅱ)證明:直線BD平面PEG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)一個圓錐,它的底面直徑和高均為.
(1)求這個圓錐的表面積和體積.
(2)在該圓錐內(nèi)作一內(nèi)接圓柱,當(dāng)圓柱的底面半徑和高分別為多少時,它的側(cè)面積最大?最大值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點,E是A1B1的中點。
(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com