(12分)一個圓錐,它的底面直徑和高均為.
(1)求這個圓錐的表面積和體積.
(2)在該圓錐內(nèi)作一內(nèi)接圓柱,當(dāng)圓柱的底面半徑和高分別為多少時,它的側(cè)面積最大?最大值是多少?

(1)  。
(2)時,圓柱的側(cè)面積取得最大值,其最大值為。

解析試題分析:(1) 如圖,設(shè)母線長為,

 ....................1分
  ...................................2分
 ...........................3分
 .....................5分
(2)設(shè)圓柱的高為,底面半徑為,側(cè)面積為
則  ..............................7分
 .........................8分
 ..............9分
 ................10分
當(dāng)時,即時,圓柱的側(cè)面積取得最大值,其最大值為....12分
考點:本題主要考查圓柱、圓錐的幾何特征,體積計算及面積計算,二次函數(shù)的圖象和性質(zhì)。
點評:綜合題,組合體問題中要注意觀察幾何元素之間的關(guān)系,并注意將“空間問題”轉(zhuǎn)化成“平面問題”,這里運用了相似三角形相關(guān)知識。本題較難。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,,,, ,分別是的中點.

(1)求證: 底面
(2)求證:平面平面;
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)
已知平面,且是垂足,

證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
正四棱柱ABCD-A1B1C1D1的底面邊長是,側(cè)棱長是3,點E、F分別在BB1、DD1上,且AE⊥A1B,AF⊥A1D.

(1)求證:A1C⊥面AEF;
(2)求截面AEF與底面ABCD所成二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
某建筑物的上半部分是多面體, 下半部分是長方體(如圖). 該建筑物的正視圖和側(cè)視圖(如圖), 其中正(主)視圖由正方形和等腰梯形組合而成,側(cè)(左)視圖由長方形和等腰三角形組合而成.


(Ⅰ)求直線與平面所成角的正弦值;
(Ⅱ)求二面角的余弦值;
(Ⅲ)求該建筑物的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,側(cè)棱與底面垂直,,,點分別為的中點.
(1)證明:平面;
(2)求三棱錐的體積;
(3)證明:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直四棱柱中,底面是直角梯形,,

(1)求證:是二面角的平面角;
(2)在上是否存一點,使得與平面與平面都平行?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題9分)如圖是一個空間幾何體的三視圖,其正視圖與側(cè)視圖是邊長為4cm的正三角形、俯視圖中正方形的邊長為4cm,

(1)畫出這個幾何體的直觀圖(不用寫作圖步驟);
(2)請寫出這個幾何體的名稱,并指出它的高是多少;
(3)求出這個幾何體的表面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA1平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點.
(1)證明:AE⊥PD‘
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為求二面角E-AF-C的余弦值

查看答案和解析>>

同步練習(xí)冊答案