【題目】甲、乙兩人玩猜數(shù)字游戲,先由甲心中任想一個數(shù)字,記為,再由乙猜甲剛才想的數(shù)字把乙猜的數(shù)字記為,且,若,則稱甲乙“心有靈犀”,現(xiàn)任意找兩個人玩這個游戲,得出他們“心有靈犀”的概率為________

【答案】

【解析】

試驗發(fā)生的所有事件是從01,23,45,67,89十個數(shù)中任取兩個數(shù)由分步計數(shù)原理知共有10×10種不同的結(jié)果,而滿足條件的|ab|2的情況通過列舉得到共28種情況,代入公式得到結(jié)果.

試驗發(fā)生的所有事件是從01,23,4,56,7,89十個數(shù)中任取兩個共有10×10種不同的結(jié)果,

|ab|1的情況有0,0;1,1;22;3,34,45,56,6;7,78,8;9,9;

0,11,0;12;2,12,3;3,2;3,4;43;4,55,4;56;6,5;6,7;7,6;78;8,7;8,9;98共28種情況,

甲乙出現(xiàn)的結(jié)果共有10×10100,

∴他們”心有靈犀”的概率為P

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點,為坐標(biāo)原點,關(guān)于的對稱點為,,圓.

1)求橢圓和圓的標(biāo)準(zhǔn)方程;

2)過點與圓相切于點,使得點,點的兩側(cè).求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域為,其中.

(1)當(dāng)時,寫出函數(shù)的單調(diào)區(qū)間(不要求證明);

(2)若對于任意的,均有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點作直線交拋物線于,兩點,若,則的值為( )

A. 10 B. 8 C. 6 D. 4

【答案】B

【解析】

根據(jù)過拋物線焦點的弦長公式,利用題目所給已知條件,求得弦長.

根據(jù)過拋物線焦點的弦長公式有.故選B.

【點睛】

本小題主要考查過拋物線焦點的弦長公式,即.要注意只有過拋物線焦點的弦長才可以使用.屬于基礎(chǔ)題.

型】單選題
結(jié)束】
10

【題目】已知橢圓: 的右頂點、上頂點分別為、,坐標(biāo)原點到直線的距離為,且,則橢圓的方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,,,分別是的中點.

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其圖象關(guān)于直線對稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點( )

A.先向左平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變

B.先向右平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變

C.先向右平移個單位長度,再把所得各點橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變

D.先向左平移個單位長度,再把所得各點橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點的橢圓和拋物線有相同的焦點,橢圓過點,拋物線的頂點為原點.

求橢圓和拋物線的方程;

設(shè)點P為拋物線準(zhǔn)線上的任意一點,過點P作拋物線的兩條切線PA,PB,其中A,B為切點.

設(shè)直線PAPB的斜率分別為,,求證:為定值;

若直線AB交橢圓C,D兩點,,分別是的面積,試問:是否有最小值?若有,求出最小值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點在以為直徑的圓上,垂直與圓所在平面,的垂心.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

同步練習(xí)冊答案