【題目】如圖,有一張半徑為1米的圓形鐵皮,工人師傅需要剪一塊頂角為銳角的等腰三角形,不妨設 , 邊上的高為 ,圓心為 ,為了使三角形的面積最大,我們設計了兩種方案.

(1)方案1:設 ,用表示 的面積 ; 方案2:設的高,用表示 的面積;

(2)請從(1)中的兩種方案中選擇一種,求出面積的最大值

【答案】(1) ;,(2)

【解析】

(1)方案1:由題意得、表示,可得 ,進而表示即可;方案2:設 ,建立x與h的關系,將用h表示出即可.

(2)由(1)可得 ,,利用求導的方法求得最大值即可.

(1)方案1:由題意得,,

分析知 過點, ,

,

,

方案2:分析知 過點,設 ,則

,得 ,

(2)選擇方案1:由(1)知 ,,

,

,得 ,其中 舍去.

時, ;當 時,,

單調遞增; 當 單調遞減,

的最大值為 ,

三角形面積最大為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】學生學習的自律性很重要.某學校對自律性與學生成績是否有關進行了調研,從該校學生中隨機抽取了100名學生,通過調查統(tǒng)計得到列聯(lián)表的部分數(shù)據(jù)如下表:

自律性一般

自律性強

合計

成績優(yōu)秀

40

成績一般

20

合計

50

100

1)補全列聯(lián)表中的數(shù)據(jù);

2)判斷是否有的把握認為學生的自律性與學生成績有關.

參考公式及數(shù)據(jù):.

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面平面,底面為梯形,,.均為正三角形,的中點,重心.

1)求證:平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是整數(shù),冪函數(shù)上是單調遞增函數(shù).

(1)求冪函數(shù)的解析式;

(2)作出函數(shù)的大致圖象;

(3)寫出的單調區(qū)間,并用定義法證明在區(qū)間上的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:

三個球全部放入兩個盒子,其中必有一個盒子有一個以上的球是必然事件;②為某一實數(shù)時,可使是不可能事件;③明天蘭州要下雨是必然事件;④100個燈泡中取出5個,5個都是次品是隨機事件.

其中正確命題的序號是(

A.①②③④B.①②③C.①②④D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中不正確的是( )

A.若兩個平面有一個公共點,則它們有無數(shù)個公共點

B.若已知四個點不共面,則其中任意三點不共線

C.若點既在平面內,又在平面內,則相交于,且點

D.任意兩條直線不能確定一個平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線經(jīng)過點,且的一個極值點為-1.

1)求的極值;

2)已知方程上恰有一個實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】天干地支紀年法,源于中國中國自古便有十天干與十二地支十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥天干地支紀年法是按順序以一個天干和一個地支相配,排列起來,天干在前,地支在后,天干由起,地支由起,比如說第一年為甲子,第二年為乙丑,第三年為丙寅依此類推,排列到癸酉后,天干回到重新開始,即甲戌”“乙亥,之后地支回到重新開始,即丙子依此類推已知1949年為己丑年,那么到新中國成立80周年時,即2029年為(

A.己丑年B.己酉年C.壬巳年D.辛未年

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,.已知函數(shù),.

(Ⅰ)求的單調區(qū)間;

(Ⅱ)已知函數(shù)的圖象在公共點(x0,y0)處有相同的切線,

(i)求證:處的導數(shù)等于0;

(ii)若關于x的不等式在區(qū)間上恒成立,求b的取值范圍.

查看答案和解析>>

同步練習冊答案