【題目】已知是整數(shù),冪函數(shù)在上是單調(diào)遞增函數(shù).
(1)求冪函數(shù)的解析式;
(2)作出函數(shù)的大致圖象;
(3)寫出的單調(diào)區(qū)間,并用定義法證明在區(qū)間上的單調(diào)性.
【答案】(1);(2)圖象見(jiàn)解析;(3)減區(qū)間為;增區(qū)間為,證明見(jiàn)解析.
【解析】
(1)根據(jù)冪函數(shù)在上是單調(diào)遞增函數(shù),可知,解不等式即可.
(2)由(1)可知,則,先畫出的圖象,再將該圖象軸下方的部分翻折到軸上方,即可.
(3)根據(jù)(2)的圖象寫出單調(diào)區(qū)間,再根據(jù)定義法證明函數(shù)單調(diào)性,即可.
(1)由題意可知,,即
因?yàn)?/span>是整數(shù),所以或
當(dāng)時(shí),
當(dāng)時(shí),
綜上所述,冪函數(shù)的解析式為.
(2) 由(1)可知,則
函數(shù)的圖象,如圖所示:
(3)由(2)可知,減區(qū)間為;增區(qū)間為
當(dāng)時(shí),
設(shè)任意的,且
則
又,且
即在區(qū)間上單調(diào)遞增.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.
求甲在4局以內(nèi)(含4局)贏得比賽的概率;
記為比賽決出勝負(fù)時(shí)的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓()經(jīng)過(guò)與兩點(diǎn).
(1)求橢圓的方程;
(2)過(guò)原點(diǎn)的直線與橢圓交于兩點(diǎn),橢圓上一點(diǎn)滿足,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,的展開式的各二項(xiàng)式系數(shù)的和等于128,
(1)求的值;
(2)求的展開式中的有理項(xiàng);
(3)求的展開式中系數(shù)最大的項(xiàng)和系數(shù)最小的項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在上的偶函數(shù),對(duì)任意,都有,且當(dāng)時(shí),.在區(qū)間內(nèi)關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校甲、乙、丙、丁四個(gè)專業(yè)分別有150,150,400,300名學(xué)生.為了解學(xué)生的就業(yè)傾向,用分層抽樣的方法從該校這四個(gè)專業(yè)中抽取60名學(xué)生進(jìn)行調(diào)查,則應(yīng)從丁專業(yè)抽取的學(xué)生人數(shù)為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一張半徑為1米的圓形鐵皮,工人師傅需要剪一塊頂角為銳角的等腰三角形,不妨設(shè) , 邊上的高為 ,圓心為 ,為了使三角形的面積最大,我們?cè)O(shè)計(jì)了兩種方案.
(1)方案1:設(shè) 為 ,用表示 的面積 ; 方案2:設(shè)的高為,用表示 的面積;
(2)請(qǐng)從(1)中的兩種方案中選擇一種,求出面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點(diǎn).
(1)求證:MN//平面ACC1A1;
(2)求點(diǎn)N到平面MBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中,底面ABC,.點(diǎn)D,E,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),,.
(1)求證:平面BDE;
(2)求二面角C-EM-N的正弦值.
(3)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com