【題目】函數(shù)有4個零點(diǎn),其圖象如下圖,和圖象吻合的函數(shù)解析式是( )

A. B.

C. D.

【答案】D

【解析】根據(jù)圖像及零點(diǎn)的意義可知,圖像為兩個函數(shù)的交點(diǎn),分別為.

.

故選D.

得解:本函數(shù)圖象的交點(diǎn)、函數(shù)的零點(diǎn)、方程的根往往是“知一求二”,解答時要先判斷哪個好求解就轉(zhuǎn)化為哪個,判斷函數(shù)零點(diǎn)個數(shù)的常用方法:(1) 直接法: 則方程實根的個數(shù)就是函數(shù)零點(diǎn)的個;(2) 零點(diǎn)存在性定理法:判斷函數(shù)在區(qū)間上是連續(xù)不斷的曲線,且再結(jié)合函數(shù)的圖象與性質(zhì)(如單調(diào)性、奇偶性、周期性、對稱性) 可確定函數(shù)的零點(diǎn)個數(shù);(3) 數(shù)形結(jié)合法:轉(zhuǎn)化為兩個函數(shù)的圖象的交點(diǎn)個數(shù)問題,畫出兩個函數(shù)的圖象,其交點(diǎn)的個數(shù)就是函數(shù)零點(diǎn)的個數(shù),在一個區(qū)間上單調(diào)的函數(shù)在該區(qū)間內(nèi)至多只有一個零點(diǎn),在確定函數(shù)零點(diǎn)的唯一性時往往要利用函數(shù)的單調(diào)性,確定函數(shù)零點(diǎn)所在區(qū)間主要利用函數(shù)零點(diǎn)存在定理,有時可結(jié)合函數(shù)的圖象輔助解題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①函數(shù)fx)=sin2xcos2x的最小正周期是

②在等比數(shù)列〔}中,若,則a3=士2;

③設(shè)函數(shù)fx)=,若有意義,則

④平面四邊形ABCD中, ,則四邊形ABCD

菱形. 其中所有的真命題是:( )

A. ①②④ B. ①④ C. ③④ D. ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|logax|(0<a<1)的定義域為[m,n](m<n),值域為[0,1],若n﹣m的最小值為 ,則實數(shù)a的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBCD,下列條件:

①∠B+∠DAC=90°,

②∠B=∠DAC,

AB2BD·BC.

其中一定能夠判定△ABC是直角三角形的共有(  )

A. 3個 B. 2個 C. 1個 D. 0個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓C:(x﹣1)2+(y﹣2)2=25,直線l:(2m+1)x+(m+1)y﹣7m﹣4=0(m∈R).
(1)證明:不論m取什么數(shù),直線l與圓C恒交于兩點(diǎn);
(2)求直線l被圓C截得的線段的最短長度,并求此時m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時,f(x)=lnx﹣ax(a> ),當(dāng)x∈(﹣2,0)時,f(x)的最小值為1,則a的值等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上,且拋物線上有一點(diǎn)到焦點(diǎn)的距離為5.

(1)求該拋物線的方程;

(2)已知拋物線上一點(diǎn),過點(diǎn)作拋物線的兩條弦,且,判斷直線是否過定點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中, ,平面經(jīng)過,直線則平面截該正方體所得截面的面積為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進(jìn)行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面, 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

同步練習(xí)冊答案