【題目】已知拋物線的頂點在原點,焦點在軸上,且拋物線上有一點到焦點的距離為5.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
【答案】(1).(2)
【解析】試題分析:(1)求出拋物線的焦點坐標,結合題意列關于p的等式求p,則拋物線方程可求;
(2)由(1)求出M的坐標,設出直線DE的方程 ,聯(lián)立直線方程和拋物線方程,化為關于y的一元二次方程后D,E兩點縱坐標的和與積,利用 得到t與m的關系,進一步得到DE方程,由直線系方程可得直線DE所過定點.
試題解析:
(1)由題意設拋物線方程為,
其準線方程為,
∵到焦點的距離等于到其準線的距離,
∴,∴.
∴拋物線的方程為.
(2)由(1)可得點,可得直線的斜率不為0,
設直線的方程為: ,
聯(lián)立,得,
則①.
設,則.
∵
即,得: ,
∴,即或,
代人①式檢驗均滿足,
∴直線的方程為: 或.
∴直線過定點(定點不滿足題意,故舍去).
點睛:拋物線的定義是解決拋物線問題的基礎,它能將兩種距離(拋物線上的點到焦點的距離、拋物線上的點到準線的距離)進行等量轉化.如果問題中涉及拋物線的焦點和準線,又能與距離聯(lián)系起來,那么用拋物線定義就能解決問題.因此,涉及拋物線的焦半徑、焦點弦問題,可以優(yōu)先考慮利用拋物線的定義轉化為點到準線的距離,這樣就可以使問題簡單化.
科目:高中數(shù)學 來源: 題型:
【題目】已知某公司生產某產品的年固定成本為100萬元,每生產1千件需另投入27萬元,設該公司一年內生產該產品千件并全部銷售完,每千件的銷售收入為萬元,且.
⑴ 寫出年利潤(萬元)關于年產量(千件)的函數(shù)解析式;
⑵ 當年產量為多少千件時,該公司在這一產品的生產中所獲年利潤最大?(注:年利潤=年銷售收入年總成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】證明與分析
(1)已知a,b為正實數(shù).求證: + ≥a+b;
(2)某題字跡有污損,內容是“已知|x|≤1, ,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內容是什么?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2cos2x+2 sinxcosx+a,且當 時,f(x)的最小值為2.
(1)求a的值,并求f(x)的單調增區(qū)間;
(2)將函數(shù)y=f(x)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的 ,再把所得圖象向右平移 個單位,得到函數(shù)y=g(x),求方程g(x)=2在區(qū)間 上的所有根之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設f(x)、g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),當x<0時,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,則不等式f(x)g(x)<0的解集是( )
A.(﹣3,0)∪(3,+∞)
B.(﹣3,0)∪(0,3)
C.(﹣∞,﹣3)∪(3,+∞)
D.(﹣∞,﹣3)∪(0,3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)y=sin2x的圖象向左平移 個單位長度,所得函數(shù)是( )
A.奇函數(shù)
B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.既不是奇函數(shù)也不是偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|3≤3x≤27}, .
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實數(shù)a的取值集合.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com