6.設(shè)復(fù)數(shù)z=-1-i(i為虛數(shù)單位),z的共軛復(fù)數(shù)為$\overline{z}$,則|z•$\overline{z}$|=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{10}$

分析 利用復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵z=-1-i(i為虛數(shù)單位),∴$\overline{z}$=-1+i,
則|z•$\overline{z}$|=|(-1)2+12|=2.
故選:C.

點評 本題考查了復(fù)數(shù)的運算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列a1,a2,a3,a4滿足a1=a4,$\frac{1}{2}$an-$\frac{1}{2{a}_{n+1}}$=an+1-$\frac{1}{{a}_{n}}$(n=1,2,3),則a1所有可能的值構(gòu)成的集合為( 。
A.{±$\frac{1}{2}$,±1}B.{±1,±2}C.{±$\frac{1}{2}$,±2}D.{±$\frac{1}{2}$,±1,±2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=lnx-$\frac{2(x-1)}{x+1}$(x>1).
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)證明:①ln$\frac{n}{n-1}$>$\frac{1}{n}$;
②$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<lnn(n∈N,n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若數(shù)列{an}的前n項和為Sn=kn2+n,且a10=20,則a100=(  )
A.200B.160C.120D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l1過點A(-1,0),且斜率為k,直線l2過點B(1,0),且斜率為-2k,其中k≠0,又直線l1與l2交于點M.
(1)求動點M的軌跡方程;
(2)若過點N($\frac{1}{2}$,1)的直線l交動點M的軌跡于C、D兩點,且N為線段CD的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.與圓x2+y2-4x+6y+3=0同圓心,且過(1,-1)的圓的方程是( 。
A.x2+y2-4x+6y-8=0B.x2+y2-4x+6y+8=0C.x2+y2+4x-6y-8=0D.x2+y2+4x-6y+8=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)集合M={-1,0,1},N={x|x2+x≤0},則M∩N=( 。
A.{-1}B.{-1,0}C.{0,1}D.{0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A={x|ax+2=0},B={x|x2-3x+2=0},且A⊆B.求由a可能的取值組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知A={x|ax2+2x+1=0,a∈R}.
(1)若1∈A,用列舉法表示A;
(2)當(dāng)A中有且只有一個元素時,求a的值組成的集合B.

查看答案和解析>>

同步練習(xí)冊答案