【題目】如圖1,在直角梯形ABCP,APBC,APAB,AB=BC=AP=2,DAP的中點(diǎn),E,F,G分別是PC,PD,CB的中點(diǎn),PCD沿CD折起,使點(diǎn)P在平面ABCD內(nèi)的射影為點(diǎn)D,如圖2

1求證:AP平面EFG;

2求三棱錐P-ABC的體積

【答案】1詳見解析2

【解析】

試題分析:I利用三角形的中位線定理、平行線的傳遞性、平行四邊形的判定定理、線面平行的判定定理等即可得出;II由已知點(diǎn)P在平面ABCD上的射影為點(diǎn)D,可得PD平面ABCD即PD是三棱錐P-ABC的高利用三棱錐P-ABC的體積V=SABC×PD即可得出

試題解析:I證明:取AD的中點(diǎn)H,連接FH、GH

E,F,G分別為PC、PDCB的中點(diǎn),EFCDCGDH

四邊形CDHG是平行四邊形,CDGH

EFGH四點(diǎn)EFHG四點(diǎn)共面FHPA

PA平面EFGHFH平面EFGHPA平面EFGH

II解:點(diǎn)P在平面ABCD上的射影為點(diǎn)D,PD平面ABCD

PD是三棱錐P-ABC的高

三棱錐P-ABC的體積V=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1求函數(shù)最值;

2,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于算法的敘述中正確的是( )

A. —個(gè)算法必須能解決一類問題 B. 求解某個(gè)問題的算法是唯一的

C. 算法不能重復(fù)使用 D. 算法的過程可以是無限的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若方程 所表示的曲線為C,給出下列四個(gè)命題:

C為橢圓,則

C為雙曲線,則;

曲線C不可能是圓;

,曲線C為橢圓,且焦點(diǎn)坐標(biāo)為;

,曲線C為雙曲線,且虛半軸長為

其中真命題的序號為____________.(把所有正確命題的序號都填在橫線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若洗水壺要用 1 分鐘、燒開水要用 10 分鐘、洗茶杯要用 2 分鐘、取茶葉要用 1 分鐘、 沏茶 1 分鐘,那么較合理的安排至少也需要 ( )

A. 10分鐘 B. 11分鐘 C. 12分鐘 D. 13分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,P是四邊形ABCD所在平面外的一點(diǎn),四邊形ABCDDAB60°且邊長為a的菱形側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD

1GAD邊的中點(diǎn),求證:BG平面PAD;

2求證:ADPB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:

①方程若有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則;

②函數(shù)是偶函數(shù),但不是奇函數(shù);

③函數(shù)的值域是,則函數(shù)的值域?yàn)?/span>

④一條曲線和直線的公共點(diǎn)個(gè)數(shù)是,則的值不可能是1

其中正確的有 (寫出所有正確的命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-1:幾何證明選講

如圖,⊙O的直徑,的中點(diǎn),點(diǎn)

1求證:

2求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓的方程為以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的單位長度,直線的極坐標(biāo)方程

當(dāng)時(shí),判斷直線的關(guān)系;

當(dāng)上有且只有一點(diǎn)到直線的距離等于時(shí),求上到直線距離為的點(diǎn)的坐標(biāo)

查看答案和解析>>

同步練習(xí)冊答案