【題目】如圖,在四棱錐中,底面是平行四邊形,,平面底面,且,,分別為,的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
【答案】(1)證明見解析(2)證明見解析(3)
【解析】
(1)連接.因為底面是平行四邊形,則是的中點,又因是的中點,則有,然后利用線面平行的判定定理證明.
(2)在中,因為,則,有.,再根據(jù)側(cè)面底面,可得平面,再利用面面垂直的判定定理證明.
(3)取中點為,連接.根據(jù),則 ,由側(cè)面底面,則平面,即點P到面ABCD的距離為,然后根據(jù)等體積法求解.
(1)如圖,
連接.因為底面是平行四邊形,且是的中點,所以也是的中點.又因是的中點,
所以.因為平面,平面,
所以平面.
(2)在中,因為,
所以,則.
又因為側(cè)面底面,交線為,而平面,
所以平面.
因為平面,
所以平面平面.
(3)取中點為,連接.因為,為的中點,
所以,
又因為側(cè)面底面,交線為,
所以平面.
因為,,
所以,
所以.
所以,所以三棱錐的體積
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,設(shè),與所成的角是,繞直線將旋轉(zhuǎn)至,則在所有旋轉(zhuǎn)過程中,關(guān)于與所成的角的說法正確的是( )
A.當(dāng)時,B.當(dāng)時,
C.當(dāng)時,D.當(dāng)時,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為菱形的四棱錐P-ABCD中,平面平面ABCD,為等腰直角三角形,,,點E,F分別為BC,PD的中點,直線PC與平面AEF交于點Q.
(1)若平面平面,求證:.
(2)求直線AQ與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心為原點,左焦點為,離心率為,不與坐標(biāo)軸垂直的直線與橢圓交于兩點.
(1)若為線段的中點,求直線的方程.
(2)求點是直線上一點,點在橢圓上,且滿足,設(shè)直線與直線的斜率分別為,問:是否為定值?若是,請求出的值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市在節(jié)日期間進(jìn)行有獎促銷,凡在該超市購物滿400元的顧客,將獲得一次摸獎機(jī)會,規(guī)則如下:獎盒中放有除顏色外完全相同的1個紅球,1個黃球,1個白球和1個黑球顧客不放回的每次摸出1個球,若摸到黑球則停止摸獎,否則就繼續(xù)摸球規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵
(1)求1名顧客摸球2次停止摸獎的概率:
(2)記為1名顧客5次摸獎獲得的獎金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校在一次期末數(shù)學(xué)測試中,為統(tǒng)計學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績,被測學(xué)生成績?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.
(1)求第七組的頻率,并完成頻率分布直方圖;
(2)用樣本數(shù)據(jù)估計該校的2000名學(xué)生這次考試成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表該組數(shù)據(jù)平均值);
(3)若從樣本成績屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對值小于10分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為,設(shè)與交于、兩點,中點為,的垂直平分線交于、.以為坐標(biāo)原點,極軸為軸的正半軸建立直角坐標(biāo)系.
(1)求的直角坐標(biāo)方程與點的直角坐標(biāo);
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com