【題目】已知二次函數對稱軸方程為,在上的奇函數滿足:當時,.
(1)求函數的解析式;
(2)判斷方程的根的個數,并說明理由.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3+bx2+ax+d的圖象過點P(0,2),且在點M(﹣1,f(﹣1))處的切線程為6x﹣y+7=0.
(1)求函數y=f(x)的解析式;
(2)求函數y=f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示
(1)求此函數的解析式;
(2)求此函數在(﹣2π,2π)上的遞增區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次項系數是1的二次函數.
當,時,求方程的實根;
設b和c都是整數,若有四個不同的實數根,并且在數軸上四個根等距排列,試求二次函數的解析式,使得其所有項的系數和最。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的固定成本(固定投入)為2500元,已知每生產x件這樣的產品需要再增加可變成本C(x)=200x+x3(元),若生產出的產品都能以每件500元售出,要使利潤最大,該廠應生產多少件這種產品?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上且以2為周期的偶函數,當0≤x≤1,f(x)=x2 . 如果函數g(x)=f(x)﹣(x+m)有兩個零點,則實數m的值為( )
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示,且f(α)=1,α∈(0, ),則cos(2α+ )=( )
A.
B.
C.﹣
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4一1:幾何證明選講 如圖,C是以AB為直徑的半圓O上的一點,過C的直線交直線AB于E,交過A點的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com