【題目】已知數(shù)列為等差數(shù)列,,數(shù)列的前項(xiàng)和為,若對一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

【答案】B

【解析】

由題意和等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,求出首項(xiàng)和公差,再代入通項(xiàng)公式求出an,再求出和Sn,設(shè)Tn=S2n﹣Sn并求出,再求出Tn+1作差判斷Tn+1﹣Tn后判斷出Tn的單調(diào)性,求出Tn的最小值,列出恒成立滿足的條件求出m的范圍.再求滿足條件的m值.

設(shè)數(shù)列{an}的公差為d,由題意得,

,解得,

∴an=n,且,

∴Sn=1+,

Tn=S2n﹣Sn=,

,

=0

∴Tn+1>Tn

Tn隨著n的增大而增大,即Tn在n=1處取最小值,

∴T1=S2﹣S1=

對一切n∈N*,恒有成立,

即可,解得m<8,

故m能取到的最大正整數(shù)是7.

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,, _______,求的周長的取值范圍.

,,且;

;

.

注:這三個(gè)條件中選一個(gè),補(bǔ)充在上面的問題中并對其進(jìn)行求解,如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線CO為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內(nèi)的交點(diǎn)為,且.

(1)求橢圓的方程;

(2)過點(diǎn)的直線交橢圓兩點(diǎn),當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018河南豫南九校高三下學(xué)期第一次聯(lián)考設(shè)函數(shù)

I)當(dāng)時(shí), 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Ox2+y2=2,直線.ly=kx-2

1)若直線l與圓O相切,求k的值;

2)若直線l與圓O交于不同的兩點(diǎn)AB,當(dāng)∠AOB為銳角時(shí),求k的取值范圍;

3)若P是直線l上的動點(diǎn),過P作圓O的兩條切線PCPD,切點(diǎn)為C,D,探究:直線CD是否過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,其中為函數(shù)的導(dǎo)數(shù)若對于,,則稱函數(shù)D上的凸函數(shù).

求證:函數(shù)是定義域上的凸函數(shù);

已知函數(shù)上的凸函數(shù).

求實(shí)數(shù)a的取值范圍;

求函數(shù),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn),平行于的直線軸上的截距為,直線交橢圓于兩個(gè)不同點(diǎn).

1求橢圓的方程;

2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案