【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),其中為直線的傾斜角.以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離的值.
【答案】(1),C:;(2)8
【解析】
(1)用消參法可得直線的普通方程,由公式可化曲線的極坐標(biāo)方程為直角坐標(biāo)方程;
(2)點(diǎn)的坐標(biāo)化為直角坐標(biāo),寫出直線的標(biāo)準(zhǔn)參數(shù)方程(為參數(shù)),代入曲線C的直角坐標(biāo)方程,應(yīng)用韋達(dá)定理,再由公式得弦長.
(1)消去參數(shù)得:; 曲線C的方程化為,直角坐標(biāo)方程為;
(2)∵點(diǎn)的極坐標(biāo)為,∴點(diǎn)的直角坐標(biāo)為.
∴,直線的傾斜角.∴直線的參數(shù)為(為參數(shù)).
代入,得.
設(shè)兩點(diǎn)對應(yīng)的參數(shù)為,則
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋子中有大小形狀完全相同的個乒乓球,乒乓球上分別印有數(shù)字,小明和小芳分別從袋子中摸出一個球(不放回),看誰摸出來的球上的數(shù)字大.小明先摸出一球說:“我不能肯定我們兩人的球上誰的數(shù)字大.”然后小芳摸出一球說:“我也不能肯定我們兩人的球上誰的數(shù)字大.”那么小芳摸出來的球上的數(shù)字是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)n為正整數(shù)集合,n對于集合A中的任意元素和,記.
(1)當(dāng)時,若,,求和的值;
(2)當(dāng)時,設(shè)B是A的子集,且滿足:對于B中的任意元素α,β,當(dāng)α,β相同時,是奇數(shù);當(dāng)α,β不同時,是偶數(shù).求集合B中元素個數(shù)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性及極值;
(Ⅱ)若不等式在內(nèi)恒成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時,若函數(shù)存在與直線平行的切線,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時,,若的最小值是,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們在培訓(xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲:82,81,79,78,95,88,93,84
乙:92,95,80,75,83,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計學(xué)的角度(在平均數(shù)、方差或標(biāo)準(zhǔn)差中選兩個)考慮,你認(rèn)為選派哪位學(xué)生參加合適?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】麻團(tuán)又叫煎堆,呈球形,華北地區(qū)稱麻團(tuán),是一種古老的中華傳統(tǒng)特色油炸面食,寓意團(tuán)圓。制作時以糯米粉團(tuán)炸起,加上芝麻而制成,有些包麻茸、豆沙等餡料,有些沒有。一個長方體形狀的紙盒中恰好放入4個球形的麻團(tuán),它們彼此相切,同時與長方體紙盒上下底和側(cè)面均相切,其俯視圖如圖所示,若長方體紙盒的表面積為576 ,則一個麻團(tuán)的體積為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知右焦點(diǎn)為的橢圓關(guān)于直線對稱的圖形過坐標(biāo)原點(diǎn).
是橢圓的左頂點(diǎn),斜率為的直線交于,兩點(diǎn),點(diǎn)在上,.
(Ⅰ)當(dāng)時,求的面積;
(Ⅱ)當(dāng)時,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】被嘉定著名學(xué)者錢大昕贊譽(yù)為“國朝算學(xué)第一”的清朝數(shù)學(xué)家梅文鼎曾創(chuàng)造出一類“方燈體”,“燈者立方去其八角也”,如圖所示,在棱長為的正方體中,點(diǎn)為棱上的四等分點(diǎn).
(1)求該方燈體的體積;
(2)求直線和的所成角;
(3)求直線和平面的所成角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com