【題目】隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,人們更加關(guān)注如何高效地獲取有價(jià)值的信息,網(wǎng)絡(luò)知識(shí)付費(fèi)近兩年呈現(xiàn)出爆發(fā)式的增長(zhǎng),為了了解網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度,某網(wǎng)站隨機(jī)抽查了歲及以上不足歲的網(wǎng)民共人,調(diào)查結(jié)果如下:
(1)請(qǐng)完成上面的列聯(lián)表,并判斷在犯錯(cuò)誤的概率不超過(guò)的前提下,能否認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān)?
(2)在上述樣本中用分層抽樣的方法,從支持和反對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的兩組網(wǎng)民中抽取名,若在上述名網(wǎng)民中隨機(jī)選人,設(shè)這人中反對(duì)態(tài)度的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
附: , .
【答案】(1) 在犯錯(cuò)誤的概率不超過(guò)的前提下,可以認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān).
(2)
【解析】試題分析:(1)先根據(jù)數(shù)據(jù)填表,再代入卡方公式求,最后與參考數(shù)據(jù)比較作判斷,(2)先根據(jù)分層抽樣確定人數(shù),確定隨機(jī)變量取法,再利用組合數(shù)計(jì)算對(duì)應(yīng)概率,列表可得分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.
試題解析:(1)列聯(lián)表如下:
支持 | 反對(duì) | 合計(jì) | |
不足歲 | |||
歲及以上 | |||
合計(jì) |
所以在犯錯(cuò)誤的概率不超過(guò)的前提下,可以認(rèn)為網(wǎng)民對(duì)網(wǎng)絡(luò)知識(shí)付費(fèi)的態(tài)度與年齡有關(guān).
(2)易知抽取的人中,有人支持, 人反對(duì).
的可能取值為, , ,且
, ,
則的分布列為
的數(shù)學(xué)期望
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是定義在上的函數(shù),若存在,使得在單調(diào)遞增,在上單調(diào)遞減,則稱為上的單峰函數(shù),為峰點(diǎn),包含峰點(diǎn)的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長(zhǎng)度為:.
(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點(diǎn);若不是,說(shuō)出原因;;
(2)若函數(shù)是上的單峰函數(shù),求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對(duì)于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問(wèn)當(dāng)滿足何種條件時(shí),所確定的含峰區(qū)間的長(zhǎng)度不大于0.6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解男性家長(zhǎng)和女性家長(zhǎng)對(duì)高中學(xué)生成人禮儀式的接受程度,某中學(xué)團(tuán)委以問(wèn)卷形式調(diào)查了位家長(zhǎng),得到如下統(tǒng)計(jì)表:
男性家長(zhǎng) | 女性家長(zhǎng) | 合計(jì) | |
贊成 | |||
無(wú)所謂 | |||
合計(jì) |
(1)據(jù)此樣本,能否有的把握認(rèn)為“接受程度”與家長(zhǎng)性別有關(guān)?說(shuō)明理由;
(2)學(xué)校決定從男性家長(zhǎng)中按分層抽樣方法選出人參加今年的高中學(xué)生成人禮儀式,并從中選人交流發(fā)言,求發(fā)言人中至多一人持“贊成”態(tài)度的概率..
參考數(shù)據(jù)
參考公式
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖是改革開放四十周年大型展覽的展館--------國(guó)家博物館.現(xiàn)欲測(cè)量博物館正門柱樓頂部一點(diǎn)離地面的高度(點(diǎn)在柱樓底部).在地面上的兩點(diǎn),測(cè)得點(diǎn)的仰角分別為,,且,米,則為( )
A. 10米 B. 20米 C. 30米 D. 40米
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知、是橢圓()的左、右焦點(diǎn),過(guò)作軸的垂線與交于、
兩點(diǎn), 與軸交于點(diǎn), ,且, 為坐標(biāo)原點(diǎn).
(1)求的方程;
(2)設(shè)為橢圓上任一異于頂點(diǎn)的點(diǎn), 、為的上、下頂點(diǎn),直線、分別交軸于點(diǎn)、.若直線與過(guò)點(diǎn)、的圓切于點(diǎn).試問(wèn): 是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1:(a>b>0)與雙曲線 C2:x2﹣有公共的焦點(diǎn),C2的一條漸近線與以C1的長(zhǎng)軸為直徑的圓相交于A,B兩點(diǎn),若C1恰好將線段AB三等分,則橢圓C1的離心率為 ( 。
A. e2= B. e2= C. e2= D. e2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,直線的斜率為,直線的斜率為,且.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè),,連接并延長(zhǎng),與軌跡交于另一點(diǎn),點(diǎn)是中點(diǎn),是坐標(biāo)原點(diǎn),記與的面積之和為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間(單位:min)進(jìn)行調(diào)查,將收集到的數(shù)據(jù)分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六組,并作出頻率分布直方圖(如圖).將日均課外體育鍛煉時(shí)間不低于40 min的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)頻率分布直方圖中的數(shù)據(jù)填寫下面的2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 總計(jì) | |
男 | 60 |
|
|
女 |
|
| 110 |
總計(jì) |
|
|
|
(2)現(xiàn)從“課外體育達(dá)標(biāo)”學(xué)生中按分層抽樣抽取5人,再?gòu)倪@5名學(xué)生中隨機(jī)抽取2人參加體育知識(shí)問(wèn)卷調(diào)查,求抽取的這2人課外體育鍛煉時(shí)間都在[40,50)內(nèi)的概率.
附參考公式與數(shù)據(jù):K2=
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com