已知定義域?yàn)镽的函數(shù)f(x)為偶函數(shù),滿(mǎn)足f(x+2)=-f(x),且當(dāng)x∈(0,1)時(shí),f(x)=2x-2,則f(log0.524)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì),函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:由f(x+2)=-f(x),可得函數(shù)f(x)是以4為周期的周期函數(shù),由函數(shù)f(x)為偶函數(shù)可得f(-x)=f(x),進(jìn)而根據(jù)log0.524∈(-5,-4),則-(log0.524+4)∈(0,1),結(jié)合當(dāng)x∈(0,1)時(shí),f(x)=2x-2,得到答案.
解答: 解:∵函數(shù)f(x)為偶函數(shù),
∴f(-x)=f(x),
又∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=f(x),
故函數(shù)f(x)是以4為周期的周期函數(shù),
∵log0.524∈(-5,-4),
∴l(xiāng)og0.524+4∈(-1,0),
∴-(log0.524+4)∈(0,1),
又∵當(dāng)x∈(0,1)時(shí),f(x)=2x-2,
∴f(-(log0.524+4))=2-(log0.524+4)-2=-
1
2

∴f(log0.524)=f(log0.524+4)=f(-(log0.524+4))=-
1
2
,
故答案為:-
1
2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),函數(shù)的周期性,函數(shù)求值,是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin2x+2
3
sinxcosx-1,x∈R.
(Ⅰ)求函數(shù)[40,50)的單調(diào)增區(qū)間;
(Ⅱ)函數(shù)的圖象可由函數(shù)y=sinx,x∈R的圖象經(jīng)過(guò)怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=-8cosx的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos36°+cos72°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
ax(x+1),x≥0
x(a-x),x<0
為奇函數(shù),則滿(mǎn)足f(t-1)<f(2t)的實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-2x+1+alnx有兩個(gè)極值點(diǎn)x1、x2,且x1<x2,則f(x1)的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知tanA=1,tanB=2,則tanC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若其面積S=
b2+c2-a2
16
,則sin
A
2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=log2x在其定義域內(nèi)任意的x1,x2且x1≠x2,有如下結(jié)論:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
>0;
④f(
x1+x2
2
)<
f(x1)+f(x2)
2

上述結(jié)論中正確結(jié)論的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案