考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用對數(shù)的基本運算性質(zhì)進行檢驗:①f(x1+x2)=lg(x1+x2)≠f(x1)f(x2)=log2x1•log2x2,②f(x1•x2)=log2x1x2=log2x1+log2x2=f(x1)+f(x2)③f(x)=log2x在(0,+∞)單調(diào)遞增,④根據(jù)對數(shù)的運算法則和基本不等式即可得到.
解答:
解:①當(dāng)x
1=1,x
2=1時,f(x
1+x
2)=f(2)=log
22,f(x
1)•f(x
2)=log
21•log
21=0,∴①錯誤;
②f(x
1•x
2)=log
2(x
1•x
2)=log
2x
1+log
2x
2=f(x
1)+f(x
2),∴②正確.
③f(x)=log
2x在(0,+∞)單調(diào)遞增,則對任意的0<x
1<x
2,都有f(x
1)<f(x
2)即
>0;∴③正確
④f(
)=log
2,
=
(log
2x
1+log
2x
2)=
log2 x1x2∵
≥,
∴l(xiāng)og
2≥
log2 x1x2,∴④錯誤.
故答案為:②③
點評:本題主要考查了對數(shù)的基本運算性質(zhì),對數(shù)函數(shù)單調(diào)性的應(yīng)用,基本不等式的應(yīng)用,屬于知識的簡單綜合應(yīng)用