[2013·湖南婁底5月]平面α∥平面β,點(diǎn)A,C∈α,B,D∈β,則直線AC∥直線BD的充要條件是( )
A.AB∥CD B.AD∥CB
C.AB與CD相交 D.A,B,C,D四點(diǎn)共面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:9-2用樣本估計(jì)總體(解析版) 題型:選擇題
[2014·江西模擬]為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某大學(xué)隨機(jī)抽取30名學(xué)生參加環(huán)保知識測試,得分(十分制)如圖所示,假設(shè)得分值的中位數(shù)為me,眾數(shù)為mo,平均值為,則( )
A.me=mo= B.me=mo<
C.me<mo< D.mo<me<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-3圓的方程(解析版) 題型:選擇題
[2012·遼寧高考]將圓x2+y2-2x-4y+1=0平分的直線是( )
A.x+y-1=0 B.x+y+3=0
C.x-y+1=0 D.x-y+3=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-6空間向量及運(yùn)算(解析版) 題型:選擇題
[2013·廣州質(zhì)檢]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三個向量共面,則實(shí)數(shù)λ等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:選擇題
[2013·廣東高考]設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面.下列命題中正確的是( )
A.若α⊥β,m?α,n?β,則m⊥n
B.若α∥β,m?α,n?β,則m∥n
C.若m⊥n,m?α,n?β,則α⊥β
D.若m⊥α,m∥n,n∥β,則α⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-3空間點(diǎn)、直線、平面之間的位置關(guān)系(解析版) 題型:選擇題
[2013·安徽高考]在下列命題中,不是公理的是( )
A.平行于同一個平面的兩個平面相互平行
B.過不在同一條直線上的三點(diǎn),有且只有一個平面
C.如果一條直線上的兩點(diǎn)在一個平面內(nèi),那么這條直線上所有的點(diǎn)都在此平面內(nèi)
D.如果兩個不重合的平面有一個公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:填空題
[2014·吉林質(zhì)檢]已知某組合體的正視圖與側(cè)視圖相同,如圖所示,其中AB=AC,四邊形BCDE為矩形,則該組合體的俯視圖可以是________(把你認(rèn)為正確的圖的序號都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-4基本不等式(解析版) 題型:選擇題
[2014·長沙質(zhì)檢]若0<x<1,則當(dāng)f(x)=x(4-3x)取得最大值時,x的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-1數(shù)列的概念與簡單表示法(解析版) 題型:選擇題
[2014·惠州質(zhì)檢]已知正整數(shù)列{an}對任意p,q∈N*,都有ap+q=ap+aq,若a2=4,則a9=( )
A.6 B.9 C.18 D.20
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com