【題目】

在平面直角坐標系中,曲線的參數(shù)方程是為參數(shù),),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程是,等邊的頂點都在上,且點,,依逆時針次序排列,點的極坐標為.

(1)求點,的直角坐標;

(2)設(shè)上任意一點,求點到直線距離的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:

(1)由題意可得點的直角坐標點的極坐標為,直角坐標為,點的極坐標為,直角坐標為.

(2)由題意可得直線的方程為利用點到直線距離公式可得點到直線距離結(jié)合三角函數(shù)的性質(zhì)可得.

試題解析:

(1)由,可得點的直角坐標

由已知,點的極坐標為,可得兩點的直角坐標為,

點的極坐標為,同理可得兩點的直角坐標為.

(2)直線的方程為,

設(shè)點 ,則點到直線距離

(其中,),

因為,所以,所以

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).在極坐標系(與平面直角坐標系取相同的長度單位,且以原點為極點,以軸非負半軸為極軸)中,直線的方程為

(1)求曲線的普通方程及直線的直角坐標方程;

(2)設(shè)是曲線上的任意一點,求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值

由散點圖知,建立關(guān)于的回歸方程是合理的,經(jīng)計算得如下數(shù)據(jù)

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根據(jù)以上信息,建立關(guān)于的回歸方程;

(2)已知這種產(chǎn)品的年利潤的關(guān)系為根據(jù)(1)的結(jié)果,求當年宣傳費,年利潤的預(yù)報值是多少?

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,

(Ⅰ)若的圖像在處的切線過點,求的值并討論上的單調(diào)增區(qū)間;

(Ⅱ)定義:若直線與曲線都相切,則我們稱直線為曲線、的公切線.若曲線存在公切線,試求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

(2)若當時, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解甲、乙兩種產(chǎn)品的質(zhì)量,從中分別隨機抽取了10件樣品,測量產(chǎn)品中某種元素的含量(單位:毫克),如圖所示是測量數(shù)據(jù)的莖葉圖.規(guī)定:當產(chǎn)品中的此中元素的含量不小于18毫克時,該產(chǎn)品為優(yōu)等品.

(1)試用樣品數(shù)據(jù)估計甲、乙兩種產(chǎn)品的優(yōu)等品率;

(2)從乙產(chǎn)品抽取的10件樣品中隨機抽取3件,求抽到的3件樣品中優(yōu)等品數(shù)的分布列及其數(shù)學期望;

(3)從甲產(chǎn)品抽取的10件樣品中有放回地隨機抽取3件,也從乙產(chǎn)品抽取的10件樣品中有放回地隨機抽取3件;抽到的優(yōu)等品中,記“甲產(chǎn)品恰比乙產(chǎn)品多2件”為事件,求事件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)求函數(shù)上的最大值和最小值;

(3)若對于任意的實數(shù)恒有求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】響應(yīng)“文化強國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學的有64人,不喜歡的有56人;女士喜歡閱讀古典文學的有36人,不喜歡的有44人.

(1)能否在犯錯誤的概率不超過0.25的前提下認為喜歡閱讀古典文學與性別有關(guān)系?

(2)為引導市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學.現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學的人數(shù),求的分布列及數(shù)學期望

附:,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實數(shù)的取值范圍;

(3)證明: .

查看答案和解析>>

同步練習冊答案