對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*).規(guī)定{△2an}為{an}的二階差分數(shù)列,其中△2an=△an+1-△an
(Ⅰ)已知數(shù)列{an}的通項公式,試判斷{△an},{△2an}是否為等差或等比數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}首項a1=1,且滿足,求數(shù)列{an}的通項公式.
【答案】分析:(Ⅰ)根據(jù)數(shù)列{an}的通項公式,結(jié)合新定義,可判定{△an}是首項為4,公差為2的等差數(shù)列,不是等比數(shù)列,{△2an}是首項為2,公差為0的等差數(shù)列,也是首項為2,公比為1的等比數(shù)列;
(Ⅱ)先猜想,再用數(shù)學歸納法進行證明,證題時要利用到歸納假設.
解答:解:(Ⅰ),
∵△an+1-△an=2,且△a1=4,(2分)
∴{△an}是首項為4,公差為2的等差數(shù)列,不是等比數(shù)列.   (3分)
∵△2an=2(n+1)+2-(2n+2)=2,
∴由定義知,{△2an}是首項為2,公差為0的等差數(shù)列;也是首項為2,公比為1的等比數(shù)列.  (6分)
(Ⅱ),即,即
又△an=an+1-an,∴.(9分)
∵a1=1,∴,,
猜想.(10分)
證明:。┊攏=1時,
ⅱ)假設n=k時,則
當n=k+1時,.結(jié)論也成立.
∴由。ⅱⅲ┛芍,.(12分)
點評:本題主要考查對新定義的理解,考查等差數(shù)列與等比數(shù)列的判定,考查數(shù)列的通項,先猜后證是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

8、對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N).對自然數(shù)k,規(guī)定{△kan}為{an}的k階差分數(shù)列,其中△kan=△k-1an+1-△k-1an=△(△k-1an).
(1)已知數(shù)列{an}的通項公式an=n2+n(n∈N),,試判斷{△an},{△2an}是否為等差或等比數(shù)列,為什么?
(2)若數(shù)列{an}首項a1=1,且滿足△2an-△an+1+an=-2n(n∈N),求數(shù)列{an}的通項公式.
(3)(理)對(2)中數(shù)列{an},是否存在等差數(shù)列{bn},使得b1Cn1+b2Cn2+…+bnCnn=an對一切自然n∈N都成立?若存在,求數(shù)列{bn}的通項公式;若不存在,則請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan} 為數(shù)列{an}的k階差分數(shù)列,其中△kan=△k-1an+1-△k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項公式an=n2+n(n∈N*),則以下結(jié)論正確的序號為
①④
①④

①△an=2n+2;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項之和為an=n2+n;   
④{△2an}的前2014項之和為4028.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分數(shù)列,其中kan=k-1an+1-k-1an(k∈N*,k≥2).已知數(shù)列{an}的通項公式an=n2+n(n∈N*),則以下結(jié)論正確的序號為
①④
①④

①△an=2n+24;       
②數(shù)列{△3an}既是等差數(shù)列,又是等比數(shù)列;
③數(shù)列{△an}的前n項之和為an=n2+n;   
④{△2an}的前2014項之和為4028.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對數(shù)列{an},規(guī)定{Van}為數(shù)列{an}的一階差分數(shù)列,其中Van=an+1-an(n∈N*).對正整數(shù)k,規(guī)定{Vkan}為{an}的k階差分數(shù)列,其中Vkan=Vk-1an+1-Vk-1an=V(VK-1an)(規(guī)定V0an=an).
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),是判斷{Van}是否為等差數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}的首項a1=1,且滿足V2an-Van+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•桂林一模)對數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分數(shù)列,其中△an=an+1-an(n∈N*).規(guī)定{△2an}為{an}的二階差分數(shù)列,其中△2an=△an+1-△an
(Ⅰ)已知數(shù)列{an}的通項公式an=n2+n(n∈N*),試判斷{△an},{△2an}是否為等差或等比數(shù)列,并說明理由;
(Ⅱ)若數(shù)列{an}首項a1=1,且滿足2an-△an+1+an=-2n(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

同步練習冊答案