【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).

1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說明理由:

2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).

3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1)是,詳見解析(2)證明見解析(3

【解析】

1)利用分段函數(shù),分類討論函數(shù)的單調(diào)性,從而得出結(jié)論;

2)兩個向量的數(shù)量積共公式以及三角恒等變換,化簡的解析式,再利用正弦函數(shù)的性質(zhì)得出結(jié)論;

3)利用二次函數(shù)的性質(zhì),分類討論,求得的范圍.

1)函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),理由如下:

當(dāng)時,有,且當(dāng)時,有

當(dāng)時,是增函數(shù),有,

故函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).

(2)由向量,,

所以,,

,解得

所以函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),使得,

故函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).

3)由函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),該二次函數(shù)的對稱軸為,

①當(dāng),即時,函數(shù)在區(qū)間是增函數(shù),

只需,即,解得,

所以實(shí)數(shù)的取值范圍為.

②當(dāng),即時,若使函數(shù)在區(qū)間內(nèi)具有零點(diǎn),

,解得,

所以,,

i當(dāng)時,函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),即,符合題意,

ii當(dāng)時,若使函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),只需,

,解得,

所以實(shí)數(shù)的取值范圍為.

③當(dāng),即時,函數(shù)在區(qū)間是減函數(shù),

當(dāng)時,只需,即,解得,

當(dāng)時,令,解得

所以函數(shù)在區(qū)間上具有唯一零點(diǎn),符合題意,

所以實(shí)數(shù)的取值范圍.

綜上所述:實(shí)數(shù)的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是國家統(tǒng)計局給出的2014年至2018年我國城鄉(xiāng)就業(yè)人員數(shù)量的統(tǒng)計圖表,結(jié)合這張圖表,以下說法錯誤的是(

A.2017年就業(yè)人員數(shù)量是最多的

B.2017年至2018年就業(yè)人員數(shù)量呈遞減狀態(tài)

C.2016年至2017年就業(yè)人員數(shù)量與前兩年比較,增加速度減緩

D.2018年就業(yè)人員數(shù)量比2014年就業(yè)人員數(shù)量增長超過400萬人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,2448,,192,逐個算出正六邊形,正十二邊形,正二十四邊形,,正一百九十二邊形,的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候的近似值是3.141024,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則的近似值是( )(精確到.(參考數(shù)據(jù)

A.3.14B.3.11C.3.10D.3.05

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,直線l與橢圓C交于P,Q兩點(diǎn),且點(diǎn)M滿足.

1)若點(diǎn),求直線的方程;

2)若直線l過點(diǎn)且不與x軸重合,過點(diǎn)M作垂直于l的直線y軸交于點(diǎn),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓C過點(diǎn)FC的右焦點(diǎn),⊙F的方程為

1)求C的方程;

2)若直線與⊙O相切,與⊙F交于M、N兩點(diǎn),與C交于P、Q兩點(diǎn),其中M、P在第一象限,記⊙O的面積為,求取最大值時,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:,,.

1)求的值;

2)設(shè),求證:數(shù)列是等比數(shù)列,并求出其通項(xiàng)公式;

3)對任意的,,在數(shù)列中是否存在連續(xù)的項(xiàng)構(gòu)成等差數(shù)列?若存在,寫出這項(xiàng),并證明這項(xiàng)構(gòu)成等差數(shù)列:若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】兩城市相距,現(xiàn)計劃在兩城市外以為直徑的半圓上選擇一點(diǎn)建造垃圾處理場,其對城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對城和城的總影響度為城和城的影響度之和,記點(diǎn)到城的距離為,建在處的垃圾處理場對城和城的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理場對城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為4,對城的影響度與所選地點(diǎn)到城的距離的平方成反比,比例系數(shù)為,當(dāng)垃圾處理場建在的中點(diǎn)時,對城和城的總影響度為0.065;

1)將表示成的函數(shù);

2)判斷上是否存在一點(diǎn),使建在此處的垃圾處理場對城和城的總影響度最小?若存在,求出該點(diǎn)到城的距離;若不存在,說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)設(shè)的反函數(shù).當(dāng)時,解不等式;

2)若關(guān)于的方程的解集中恰好有一個元素,求實(shí)數(shù)的值;

3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,若,則稱數(shù)列”.

1)若數(shù)列,且,,,求的取值范圍;

2)若是等差數(shù)列,首項(xiàng)為,公差為,且,判斷是否為數(shù)列;

3)設(shè)數(shù)列是等比數(shù)列,公比為,若數(shù)列都是數(shù)列,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案