【題目】已知函數(shù).
(1)設(shè)是的反函數(shù).當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.
【答案】(1);(2)或;(3).
【解析】
(1)先由,得到,求出其反函數(shù),解對(duì)應(yīng)不等式,即可得出結(jié)果;
(2)先由得到,分別討論和兩種情況,即可得出結(jié)果;
(3)根據(jù)復(fù)合函數(shù)單調(diào)性,得到在區(qū)間上單調(diào)遞減,求出其最值,根據(jù)題意,得到,推出對(duì)任意的恒成立,令,求出的最大值,即可得出結(jié)果.
(1)當(dāng)時(shí),,由得,所以,
因?yàn)?/span>是的反函數(shù),
所以,,
由得,所以:,解得:,
即不等式的解集為;
(2)方程即,
所以,
①,則,經(jīng)過(guò)驗(yàn)證,滿足關(guān)于的方程的解集中恰好有一個(gè)元素;
②時(shí),(i)若,解得,代入,解得,經(jīng)過(guò)驗(yàn)證,滿足關(guān)于的方程的解集中恰好有一個(gè)元素;
(ii)若,則;
當(dāng)時(shí),由解得:或,即方程的解要在范圍內(nèi),
解方程得,因?yàn)?/span>,
所以為使關(guān)于的方程的解集中恰好有一個(gè)元素,
只需,即,顯然不成立;
當(dāng)時(shí),由解得:,即方程的解要在范圍內(nèi),
解方程得,因?yàn)?/span>,所以,,且,
因此只需,即,
即,解得:,與矛盾,也不滿足題意;
綜上,實(shí)數(shù)的值為或;
(3)由對(duì)數(shù)函數(shù)的單調(diào)性可得單調(diào)遞增,根據(jù)冪函數(shù)單調(diào)性可得在上單調(diào)遞減,因?yàn)?/span>,,
所以,根據(jù)復(fù)合函數(shù)單調(diào)性,可得在區(qū)間上單調(diào)遞減,
因此,,
又函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),
所以,
即,整理得,即對(duì)任意的恒成立,
令,,
任取,則
,
因?yàn)?/span>,所以,,,
因此,即;
所以在上單調(diào)遞減,
所以,
因此,只需.
故的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,設(shè)的內(nèi)切圓分別與邊相切于點(diǎn),已知,記動(dòng)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過(guò)的直線與軸正半軸交于點(diǎn),與曲線E交于點(diǎn)軸,過(guò)的另一直線與曲線交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個(gè)實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說(shuō)明理由:
(2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)在內(nèi)單調(diào)遞增;
(2)記為函數(shù)的反函數(shù).若關(guān)于的方程在上有解,求的取值范圍;
(3)若對(duì)于恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為矩形,平面平面,,點(diǎn),分別是,的中點(diǎn).
(1)求證:平面;
(2)若與平面所成角的余弦值等于,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖(1)為東方體育中心,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖(2)所示;曲線是以點(diǎn)為圓心的圓的一部分,其中,曲線是拋物線的一部分;且恰好等于圓的半徑,與圓相切且.
(1)若要求米,米,求與的值;
(2)當(dāng)時(shí),若要求不超過(guò)45米,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國(guó)隊(duì)與韓國(guó)隊(duì)相遇,中國(guó)隊(duì)男子選手A,B,C,D,E依次出場(chǎng)比賽,在以往對(duì)戰(zhàn)韓國(guó)選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用5局3勝制,先贏3局者獲得勝利.
(1)在決賽中,中國(guó)隊(duì)以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)雙曲線方程為,過(guò)其右焦點(diǎn)且斜率不為零的直線與雙曲線交于A,B兩點(diǎn),直線的方程為,A,B在直線上的射影分別為C,D.
(1)當(dāng)垂直于x軸,時(shí),求四邊形的面積;
(2),的斜率為正實(shí)數(shù),A在第一象限,B在第四象限,試比較與1的大。
(3)是否存在實(shí)數(shù),使得對(duì)滿足題意的任意,直線和直線的交點(diǎn)總在軸上,若存在,求出所有的值和此時(shí)直線和交點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為實(shí)數(shù).
(1)討論在上的奇偶性;(只要寫出結(jié)論,不需要證明)
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com