【題目】已知函數(shù).

1)設(shè)的反函數(shù).當(dāng)時(shí),解不等式;

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;

3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.

【答案】1;(2;(3.

【解析】

1)先由,得到,求出其反函數(shù),解對(duì)應(yīng)不等式,即可得出結(jié)果;

2)先由得到,分別討論兩種情況,即可得出結(jié)果;

3)根據(jù)復(fù)合函數(shù)單調(diào)性,得到在區(qū)間上單調(diào)遞減,求出其最值,根據(jù)題意,得到,推出對(duì)任意的恒成立,令,求出的最大值,即可得出結(jié)果.

1)當(dāng)時(shí),,由,所以,

因?yàn)?/span>的反函數(shù),

所以,

,所以:,解得:,

即不等式的解集為

2)方程,

所以,

,則,經(jīng)過(guò)驗(yàn)證,滿足關(guān)于的方程的解集中恰好有一個(gè)元素;

時(shí),(i)若,解得,代入,解得,經(jīng)過(guò)驗(yàn)證,滿足關(guān)于的方程的解集中恰好有一個(gè)元素;

(ii)若,則;

當(dāng)時(shí),由解得:,即方程的解要在范圍內(nèi),

解方程,因?yàn)?/span>

所以為使關(guān)于的方程的解集中恰好有一個(gè)元素,

只需,即,顯然不成立;

當(dāng)時(shí),由解得:,即方程的解要在范圍內(nèi),

解方程,因?yàn)?/span>,所以,,且,

因此只需,即,

,解得:,與矛盾,也不滿足題意;

綜上,實(shí)數(shù)的值為

3)由對(duì)數(shù)函數(shù)的單調(diào)性可得單調(diào)遞增,根據(jù)冪函數(shù)單調(diào)性可得上單調(diào)遞減,因?yàn)?/span>,

所以,根據(jù)復(fù)合函數(shù)單調(diào)性,可得在區(qū)間上單調(diào)遞減,

因此,

又函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),

所以,

,整理得,即對(duì)任意的恒成立,

,,

任取,則

,

因?yàn)?/span>,所以,,,

因此,即

所以上單調(diào)遞減,

所以,

因此,只需.

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,,設(shè)的內(nèi)切圓分別與邊相切于點(diǎn),已知,記動(dòng)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)過(guò)的直線與軸正半軸交于點(diǎn),與曲線E交于點(diǎn)軸,過(guò)的另一直線與曲線交于兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個(gè)實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).

1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說(shuō)明理由:

2)已知向量,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).

3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求證:函數(shù)內(nèi)單調(diào)遞增;

2)記為函數(shù)的反函數(shù).若關(guān)于的方程上有解,求的取值范圍;

3)若對(duì)于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為矩形,平面平面,,點(diǎn)分別是,的中點(diǎn).

1)求證:平面;

2)若與平面所成角的余弦值等于,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖(1)為東方體育中心,其設(shè)計(jì)方案?jìng)?cè)面的外輪廓線如圖(2)所示;曲線是以點(diǎn)為圓心的圓的一部分,其中,曲線是拋物線的一部分;恰好等于圓的半徑,與圓相切且.

1)若要求米,米,求的值;

2)當(dāng)時(shí),若要求不超過(guò)45米,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國(guó)隊(duì)與韓國(guó)隊(duì)相遇,中國(guó)隊(duì)男子選手A,B,C,D,E依次出場(chǎng)比賽,在以往對(duì)戰(zhàn)韓國(guó)選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會(huì)釆用53勝制,先贏3局者獲得勝利.

1)在決賽中,中國(guó)隊(duì)以31獲勝的概率是多少?

2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)雙曲線方程為,過(guò)其右焦點(diǎn)且斜率不為零的直線與雙曲線交于A,B兩點(diǎn),直線的方程為,A,B在直線上的射影分別為CD.

1)當(dāng)垂直于x軸,時(shí),求四邊形的面積;

2,的斜率為正實(shí)數(shù),A在第一象限,B在第四象限,試比較1的大。

3)是否存在實(shí)數(shù),使得對(duì)滿足題意的任意,直線和直線的交點(diǎn)總在軸上,若存在,求出所有的值和此時(shí)直線交點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為實(shí)數(shù).

1)討論上的奇偶性;(只要寫出結(jié)論,不需要證明)

2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),求函數(shù)上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案