【題目】以下命題,①若實數(shù),則.
②歸納推理是由特殊到一般的推理,而類比推理是由特殊到特殊的推理;
③在回歸直線方程中,當變量每增加一個單位時,變量一定增加0.2單位.
④“若,則復(fù)數(shù)”類比推出“若,則”;
正確的個數(shù)是( )
A. 1B. 2C. 3D. 4
科目:高中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△BCD所在平面互相垂直,且AB=BC=BD=2,∠ABC=∠DBC=120°,E,F分別為AC,DC的中點.
(1)求證:EF⊥BC;
(2)求二面角E-BF-C的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某理財公司有兩種理財產(chǎn)品A和B,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):
產(chǎn)品A
投資結(jié)果 | 獲利40% | 不賠不賺 | 虧損20% |
概率 |
產(chǎn)品B
投資結(jié)果 | 獲利20% | 不賠不賺 | 虧損10% |
概率 | p | q |
注:p>0,q>0
(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數(shù)p的取值范圍;
(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù),),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的普通方程和曲線的直角坐標方程;
(2)已知曲線和曲線交于兩點(在之間),且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在處切線方程;
(2)討論的單調(diào)區(qū)間;
(3)試判斷時的實根個數(shù)說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從分別寫有1,2,3,4,5的5張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為()
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)產(chǎn)品從5月1日起開始上市,通過市場調(diào)查,得到該農(nóng)產(chǎn)品種植成本Q(單位:元/)與上市時間t(單位:天)的數(shù)據(jù)如下表:
t | 50 | 110 | 250 |
Q | 150 | 108 | 150 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù)中選取一個函數(shù)描述該農(nóng)產(chǎn)品種植成本Q與上市時間t的變化關(guān)系,并求出函數(shù)關(guān)系式:,,,.
(2)利用你選取的函數(shù),求該農(nóng)產(chǎn)品種植成本最低時的上市時間及最低種植成本.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商品促銷活動設(shè)計了一個摸獎游戲:在一個口袋中裝有4個紅球和6個白球,這些球除顏色外完全相同,顧客一次從中摸出3個球,若3個都是白球則無獎勵,若有1個紅球則獎勵10元購物券,若有2個紅球則獎勵20元購物券,若3個都是紅球則獎勵30元購物券.
(Ⅰ)求中獎的概率;
(Ⅱ)求顧客摸獎一次獲得購物券獎勵的平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(原創(chuàng)題)已知點是橢圓和拋物線 的公共焦點, 是橢圓的長軸的兩個端點,點是與 在第二象限的交點,且.
(I) 求橢圓 的方程;
(II) 點為直線上的動點,過點作拋物線的兩條切線,切點分別為.直線交橢圓 于兩點,設(shè)△的面積為,△的面積為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com