【題目】已知數(shù)列滿足, ,( N*).
(Ⅰ)寫出的值;
(Ⅱ)設(shè),求的通項公式;
(Ⅲ)記數(shù)列的前項和為,求數(shù)列的前項和的最小值.
【答案】(Ⅰ);(Ⅱ);(Ⅲ).
【解析】試題分析:(Ⅰ)根據(jù)遞推關(guān)系式寫出前六項即可;(Ⅱ)利用等差數(shù)列定義證明是等差數(shù)列,并寫出其通項公式;(Ⅲ)根據(jù)等差數(shù)列的性質(zhì)寫出,再證出是等比數(shù)列,寫出通項公式,可知當時項是非正的,從而得其最小值.
試題解析:(Ⅰ) , ;
(Ⅱ)設(shè), 則,
所以是以1為首項,2為公差的等差數(shù)列,所以.
(Ⅲ)解法1: , ,
所以是以1為首項, 為公差的等差數(shù)列,所以數(shù)列的前n個奇數(shù)項之和為,由(Ⅱ)可知, ,
所以數(shù)列的前n個偶數(shù)項之和為.
所以,所以.
因為,且
所以數(shù)列是以為首項, 為公差的等差數(shù)列.
由可得,
所以當或時,數(shù)列的前項和的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的有 . (填上所有正確命題的序號) ①一質(zhì)點在直線上以速度v=3t2﹣2t﹣1(m/s)運動,從時刻t=0(s)到t=3(s)時質(zhì)點運動的路程為15(m);
②若x∈(0,π),則sinx<x;
③若f′(x0)=0,則函數(shù)y=f(x)在x=x0取得極值;
④已知函數(shù) ,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωx+λcosωx,其圖象的一個對稱中心到最近的一條對稱軸的距離為 ,且在x= 處取得最大值.
(1)求λ的值.
(2)設(shè) 在區(qū)間 上是增函數(shù),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的方程為.
(1)求圓的直角坐標方程;
(2)設(shè)圓與直線交于點,若點的坐標為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a<0,q:實數(shù)x滿足x2﹣x﹣6≤0或x2+2x﹣8>0,且非p是非q的必要不充分條件,則實數(shù)a的范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A則實數(shù)b的取值范圍是( )
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的傾斜角為且經(jīng)過點,以原點為極點,以軸正半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系,設(shè)曲線的極坐標方程為.
(1)若直線與曲線有公共點,求的取值范圍;
(2)設(shè)為曲線上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】廣東某市一玩具廠生產(chǎn)一種玩具深受大家喜歡,經(jīng)市場調(diào)查該商品每月的銷售量(單位:千件)與銷售價格(單位:元/件)滿足關(guān)系式,其中, 為常數(shù).已知銷售價格為4元/件時,每日可售出玩具21千件.
(1)求的值;
(2)假設(shè)該廠生產(chǎn)這種玩具的成本、員工工資等所有開銷折合為每件2元(只考慮銷售出的件數(shù)),試確定銷售價格的值,使該廠每日銷售這種玩具所獲得的利潤最大.(保留1位小數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)如圖,在四棱錐中, 平面,底面是菱形, , 為與的交點, 為上任意一點.
(1)證明:平面平面;
(2)若平面,并且二面角的大小為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com