【題目】某電訊企業(yè)為了了解某地區(qū)居民對電訊服務質(zhì)量評價情況,隨機調(diào)查100 名用戶,根據(jù)這100名用戶對該電訊企業(yè)的評分,繪制頻率分布直方圖,如圖所示,其中樣本數(shù)據(jù)分組為,,…….
(1)估計該地區(qū)用戶對該電訊企業(yè)評分不低于70分的概率,并估計對該電訊企業(yè)評分的中位數(shù);
(2)現(xiàn)從評分在的調(diào)查用戶中隨機抽取2人,求2人評分都在的概率.
【答案】(1);77.14;(2).
【解析】
(1)由題意列出頻率分布表,求和即可估計該地區(qū)用戶對該電訊企業(yè)評分不低于70分的概率;利用中位數(shù)兩側的概率和相等列方程即可估計對該電訊企業(yè)評分的中位數(shù);
(2)由題意計算出受調(diào)查用戶評分在、的人數(shù),求出總的基本事件個數(shù)及滿足要求的基本事件的個數(shù),由古典概型概率公式即可得解.
(1)由題意,該地區(qū)用戶對該電訊企業(yè)評分的頻率分布如下表:
評分 | ||||||
頻率 | 0.04 | 0.06 | 0.20 | 0.28 | 0.24 | 0.18 |
因此可估計評分不低于70分的概率為;
對該電訊企業(yè)評分的中位數(shù)設為x,可得,
則,
解得,
所以可估計對該電訊企業(yè)評分的中位數(shù)為;
(2)受調(diào)查用戶評分在的有人,
若編號依次為1,2,3,4,從中選2人的事件有、
、、、、,
共有個基本事件;
受調(diào)查用戶評分在的有人,
若編號依次為1,2,3,..9,10,從中選2人,
可得共有個基本事件;
因此2人評分都在的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且與拋物線交于,兩點, (為坐標原點)的面積為.
(1)求橢圓的方程;
(2)如圖,點為橢圓上一動點(非長軸端點),為左、右焦點,的延長線與橢圓交于點,的延長線與橢圓交于點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)是( )
①“x>1”是“x>2”的充分不必要條件;
②f(x)是其定義域上的可導函數(shù),“f'(x0)=0”是“y=f(x)在x0處有極值”的充要條件;
③命題“若a>b,則2a>2b﹣1”的否命題為“若a≤b,則2a≤2b﹣1”;
④若“p且q”為假命題,則p、q均為假命題.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某高三年級男生中隨機抽取50名測量身高,測量發(fā)現(xiàn)被測學生身高全部介于和之間,將測量結果按如下方式分成6組:第1組,第2組,…,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)由頻率分布直方圖估計該校高三年級男生身高的中位數(shù);
(2)在這50名男生身高不低于的人中任意抽取2人,則恰有一人身高在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設、分別是橢圓的左、右焦點,、兩點分別是橢圓的上、下頂點,是等腰直角三角形,延長交橢圓于點,且的周長為.
(1)求橢圓的方程;
(2)設點是橢圓上異于、的動點,直線、與直線分別相交于、兩點,點,試問:外接圓是否恒過軸上的定點(異于點)?若是,求該定點坐標;若否,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左、右焦點為,,點在橢圓上,且面積的最大值為,周長為6.
(1)求橢圓的方程,并求橢圓的離心率;
(2)已知直線:與橢圓交于不同的兩點,若在軸上存在點,使得與中點的連線與直線垂直,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐的底面是邊長為3的等邊三角形,側棱設點M,N分別為PC,BC的中點.
(Ⅰ)求證:BC⊥面AMN;
(Ⅱ)求直線AP與平面AMN所成角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:()的準線與x軸交于點A,點在拋物線C上.
(1)求C的方程;
(2)過點M作直線l,交拋物線C于另一點N,若的面積為,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當時,的最大值為2,求的值,并求出的對稱軸方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com