已知函數(shù)f(x)=lg(x+1),若g(x)滿足g(x+1)=-g(x),且當(dāng)0≤x≤1時(shí),有g(shù)(x)=f(x),求函數(shù)y=g(x)(-2≤x≤-1)的解析式.
考點(diǎn):函數(shù)解析式的求解及常用方法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)g(x+1)=-g(x),求解函數(shù)周期,當(dāng)0≤x≤1時(shí),有g(shù)(x)=lg(x+1),設(shè)-2≤x≤-1,則0≤x+2≤1,代入求解即可.
解答: 解:∵g(x)滿足g(x+1)=-g(x),
∴g(x+2)=-g(x+1)=g(x),
∵當(dāng)0≤x≤1時(shí),有g(shù)(x)=f(x),
∴當(dāng)0≤x≤1時(shí),有g(shù)(x)=lg(x+1),
∵設(shè)-2≤x≤-1,則0≤x+2≤1,
∴g(x)=g(x+2)=ln(x+2),(0≤x≤1)
故函數(shù)y=g(x)=ln(x+2)(-2≤x≤-1).
點(diǎn)評:本題考查了函數(shù)的性質(zhì),運(yùn)用函數(shù)的周期性求解解析式,屬于容易題,難度不大,關(guān)鍵是轉(zhuǎn)化變量范圍,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,平面PAD⊥底面ABCD.
(Ⅰ)證明:PA⊥BD;
(Ⅱ)若PA=
2
PD=
2
AD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+2y-4≤0
x≥0
y≥0
,則z=(x-4)2+(y-5)2的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=tan(2πx+
π
6
)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件求函數(shù)f(x)=sin(x+
π
4
)+2sin(x-
π
4
)-4cos2x+3cos(x+
4
)的值.
(1)x=
π
4
;
(2)x=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α、β∈﹙0,
π
2
﹚,p=sin﹙α+β﹚,q=sinα+sinβ,r=p+q,則p、q、r從大到小的排列為( 。
A、p>q>r
B、p>r>q
C、r>p>q
D、r>q>p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
3
x-1在區(qū)間[-2,-1]上的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某港口的水深y(m)是時(shí)間t(0≤t≤24,單位:h)的函數(shù),下表是該港口某一天從0:00時(shí)至24:00時(shí)記錄的時(shí)間t與水深y的關(guān)系:
t (h)0:003:006:009:0012:0015:00
y (m)9.912.910.07.110.013.0
(Ⅰ)經(jīng)長時(shí)間的觀察,水深y與t的關(guān)系可以用正弦型函數(shù)擬合,求出擬合函數(shù)的表達(dá)式;
(Ⅱ)如果某船的吃水深度(船底與水面的距離)為7m,船舶安全航行時(shí)船底與海底的距離不少于4.5m.那么該船在什么時(shí)間段能夠進(jìn)港?若該船欲當(dāng)天安全離港,它在港內(nèi)停留的時(shí)間最多不能超過多長時(shí)間(忽略離港所需時(shí)間);
(Ⅲ)若某船吃水深度為8m,安全間隙(船底與海底的距離)為2.5.該船在3:00開始卸貨,吃水深度以每小時(shí)0.5m的速度減少,該船在什么時(shí)間必須停止卸貨,駛向較安全的水域?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下四個(gè)命題:
①若函數(shù)f(x)=x3+ax2+2的圖象關(guān)于點(diǎn)(1,0)對稱,則a的值為-3;
②若f(x+2)+
1
f(x)
=0,則函數(shù)y=f(x)是以4為周期的周期函數(shù);
③在數(shù)列{an}中,a1=1,Sn是其前N項(xiàng)和,且滿足Sn+1=
1
2
Sn+
1
2
,則{an}數(shù)列是等比數(shù)列;
④函數(shù)y=3x+3-x(x<0)的最小值為2.
則正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案