【題目】某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n),其中,a,b為常數(shù),n∈Nf(0)A.已知栽種3年后該樹木的高度為栽種時高度的3倍.

1)栽種多少年后,該樹木的高度是栽種時高度的8倍;

2)該樹木在栽種后哪一年的增長高度最大.

【答案】1)栽種年后,該樹木的高度是栽種時高度的倍;(2)第年的增長高度最大.

【解析】

試題(1)由題中所給條件,運用待定系數(shù)法不難求出,進而確定出函數(shù),其中.由,運用解方程的方法即可求出,問題得解; 2)由前面(1)中已求得,可表示出第n年的增長高度為 ,這是一個含有較多字母的式子,這也中本題的一個難點,運用代數(shù)化簡和整體思想可得:,觀察此式特征能用基本不等式的方法進行求它的最值,即:,成立的條件為 當且僅當時取等號,即可求出

試題解析: (1)由題意知

所以解得4

所以,其中

,得,解得,

所以

所以栽種9年后,該樹木的高度是栽種時高度的8倍. 6

2)由(1)知

n年的增長高度為 9

所以

12

當且僅當,即時取等號,此時

所以該樹木栽種后第5年的增長高度最大. 14

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面命題中,正確的命題有(  )

①若n1,n2分別是不同平面α,β的法向量,n1n2αβ;

②若n1,n2分別是平面α,β的法向量,αβn1·n2=0;

③若n是平面α的法向量,b,cα內(nèi)兩個不共線的向量,abc(λ,μR),n·a=0;

④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)請在所給的平面直角坐標系中畫出函數(shù)的圖象;

2)根據(jù)函數(shù)的圖象回答下列問題:求函數(shù)的單調(diào)區(qū)間;

求函數(shù)的值域;求關于的方程在區(qū)間上解的個數(shù).(回答上述3個小題都只需直接寫出結果,不需給出演算步驟)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數(shù),且滿足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在用二次法求方程3x+3x-8=0在(12)內(nèi)近似根的過程中,已經(jīng)得到f1)<0,f1.5)>0f1.25)<0,則方程的根落在區(qū)間(  )

A. B. C. D. 不能確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調(diào)研知,每輛車售價萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.

(1)求出2018年的利潤(萬元)關于年產(chǎn)量(百輛)的函數(shù)關系式;(利潤=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知E,F(xiàn)分別為正方體ABCD﹣A1B1C1D的棱AB,AA1上的點,且AE=AB,AF=AA1 , M,N分別為線段D1E和線段C1F上的點,則與平面ABCD平行的直線MN有( 。
A.1條
B.3條
C.6條
D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù);

(2)設函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪70元,每單抽成4元;乙公司無底薪,40單以內(nèi)(含40單)的部分每單抽成5元,超出40單的部分每單抽成7元,假設同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機抽取一名送餐員,并分別記錄其100天的送餐單數(shù),得到如表頻數(shù)表: 甲公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

20

40

20

10

10

乙公司送餐員送餐單數(shù)頻數(shù)表

送餐單數(shù)

38

39

40

41

42

天數(shù)

10

20

20

40

10

(Ⅰ)現(xiàn)從甲公司記錄的100天中隨機抽取兩天,求這兩天送餐單數(shù)都大于40的概率;
(Ⅱ)若將頻率視為概率,回答下列問題:
(i)記乙公司送餐員日工資為X(單位:元),求X的分布列和數(shù)學期望;
(ii)小明擬到甲、乙兩家公司中的一家應聘送餐員,如果僅從日工資的角度考慮,請利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

同步練習冊答案