【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.

(1)求出2018年的利潤(rùn)(萬元)關(guān)于年產(chǎn)量(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).

【答案】(1);(2)當(dāng)時(shí),即年生產(chǎn)百輛時(shí),該企業(yè)獲得利潤(rùn)最大,且最大利潤(rùn)為萬元.

【解析】試題分析:(1)利用給定的公式利潤(rùn)=銷售額-成本”計(jì)算利潤(rùn),因?yàn)槌杀竞瘮?shù)是分段函數(shù),故需要分類計(jì)算得到利潤(rùn)函數(shù)為.(2)當(dāng)時(shí),,這是二次函數(shù),其最大值為;當(dāng)時(shí),最大值為,因此年生產(chǎn)百輛時(shí),該企業(yè)獲得利潤(rùn)最大,且最大利潤(rùn)為萬元.

解析:(1)當(dāng)時(shí),

當(dāng)時(shí),

.

(2)當(dāng)時(shí),,

∴當(dāng)時(shí),

當(dāng)時(shí),

當(dāng)且僅當(dāng),即時(shí),;

∴當(dāng)時(shí),即年生產(chǎn)百輛時(shí),該企業(yè)獲得利潤(rùn)最大,且最大利潤(rùn)為萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( 。
A.﹣或﹣
B.﹣或﹣
C.﹣或﹣
D.﹣或﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

(2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

附:,其中

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:若m﹣ <x (m∈Z),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即m={x},關(guān)于函數(shù)f(x)=x﹣{x}的四個(gè)命題:①定義域?yàn)镽,值域?yàn)椋ī? ]; ②點(diǎn)(k,0)是函數(shù)f(x)圖象的對(duì)稱中心(k∈Z);③函數(shù)f(x)的最小正周期為1; ④函數(shù)f(x)在(﹣ , ]上是增函數(shù).上述命題中,真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,銳角和鈍角的終邊分別與單位圓交于兩點(diǎn).

(Ⅰ)如果點(diǎn)縱坐標(biāo)分別為,求;

(Ⅱ)若軸上異于的點(diǎn),且,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬奧會(huì),推廣滑雪運(yùn)動(dòng),某滑雪場(chǎng)開展滑雪促銷活動(dòng).該滑雪場(chǎng)的收費(fèi)標(biāo)準(zhǔn)是:滑雪時(shí)間不超過1小時(shí)免費(fèi),超過1小時(shí)的部分每小時(shí)收費(fèi)標(biāo)準(zhǔn)為40元(不足1小時(shí)的部分按1小時(shí)計(jì)算).有甲、乙兩人相互獨(dú)立地來該滑雪場(chǎng)運(yùn)動(dòng),設(shè)甲、乙不超過1小時(shí)離開的概率分別為,;1小時(shí)以上且不超過2小時(shí)離開的概率分別為,;兩人滑雪時(shí)間都不會(huì)超過3小時(shí).

(1)求甲、乙兩人所付滑雪費(fèi)用相同的概率;

(2)設(shè)甲、乙兩人所付的滑雪費(fèi)用之和為隨機(jī)變量ξ,求ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a∈R,f(x)= 為奇函數(shù).
(1)求函數(shù)F(x)=f(x)+2x﹣ ﹣1的零點(diǎn);
(2)設(shè)g(x)=2log2 ),若不等式f1(x)≤g(x)在區(qū)間[ , ]上恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的通項(xiàng)公式為 ,求數(shù)列{anbn}的前n項(xiàng)的和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案