【題目】如圖,在平面直角坐標系中,銳角和鈍角的終邊分別與單位圓交于兩點.

(Ⅰ)如果點縱坐標分別為,求;

(Ⅱ)若軸上異于的點,且,求點橫坐標的取值范圍.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)利用三角函數(shù)的定義,結合兩角和差的余弦公式進行計算即可;(Ⅱ) 若,則,設,可得利用向量垂直的坐標公式,可得,由,結合余弦函數(shù)的單調性可得結果.

(Ⅰ)∵點A、B縱坐標分別為、,

∴sinα=,sinβ=,

∵α為銳角,β為鈍角,

(Ⅱ)依題意得A(cosα,sinα),B(cosβ,sinβ),

AOB=90,即β=α+90,

B(-sinα,cosα),

∴(-x+cosα)(-x-sinα)+sinα·cosα=0,

整理得x2+x(sinα-cosα)=0,(x0),

x=cosα-sinα=cos(α+),(x0),

所以x(-1,0)∪(0,1).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線 的左、右焦點分別為F1、F2,直線l過F2且與雙曲線交于A、B兩點.
(1)若l的傾斜角為 , 是等邊三角形,求雙曲線的漸近線方程;
(2)設 ,若l的斜率存在,且|AB|=4,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的中心在坐標原點,焦點在軸上,離心率,虛軸長為2.

(1)求雙曲線的標準方程;

(2)若直線與雙曲線相交于兩點,( 均異于左、右頂點),且以為直徑的圓過雙曲線的左頂點,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內三個向量:.

(Ⅰ)若,求實數(shù)的值;

(Ⅱ)設,且滿足,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產(chǎn)設備,通過市場分析,全年需投入固定成本萬元,每生產(chǎn)(百輛),需另投入成本萬元,且.由市場調研知,每輛車售價萬元,且全年內生產(chǎn)的車輛當年能全部銷售完.

(1)求出2018年的利潤(萬元)關于年產(chǎn)量(百輛)的函數(shù)關系式;(利潤=銷售額-成本)

(2)2018年產(chǎn)量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市場調查發(fā)現(xiàn),某種產(chǎn)品在投放市場的30天中,其銷售價格P(元)和時間t(天)(t∈N)的關系如圖所示

(1)寫出銷售價格P(元)和時間t(天)的函數(shù)解析式;
(2)若日銷售量Q(件)與時間t(天)的函數(shù)關系是Q=﹣t+40(0≤t≤30,t∈N),求該商品的日銷售金額y(元)與時間t(天)的函數(shù)解析式;
(3)問該產(chǎn)品投放市場第幾天時,日銷售金額最高?最高值為多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知標有1~20號的小球20,若我們的目的是估計總體號碼的平均值,20個小球號碼的平均值.試驗者從中抽取4個小球,以這4個小球號碼的平均值估計總體號碼的平均值,按下面方法抽樣(按小號到大號排序):

(1)以編號2為起點,系統(tǒng)抽樣抽取4個球,則這4個球的編號的平均值為____.

(2)以編號3為起點,系統(tǒng)抽樣抽取4個球,則這4個球的編號的平均值為____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于利用斜二側法得到的直觀圖有下列結論:①三角形的直觀圖是三角形;②平行四邊形的直觀圖是平行四邊形;③正方形的直觀圖是正方形;④菱形的直觀圖是菱形,以上結論正確的是( )

A. ①② B. C. ③④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下命題:

(1)若;,則為真,為假,為真

(2)“”是“曲線表示橢圓”的充要條件

(3)命題“若,則”的否命題為:“若,則

(4)如果將一組數(shù)據(jù)中的每一個數(shù)都加上同一個非零常數(shù),那么這組數(shù)據(jù)的平均數(shù)和方差都改變;

則正確命題有( )個

A. B. C. D.

查看答案和解析>>

同步練習冊答案