【題目】給出以下命題:

(1)若;,則為真,為假,為真

(2)“”是“曲線表示橢圓”的充要條件

(3)命題“若,則”的否命題為:“若,則

(4)如果將一組數(shù)據中的每一個數(shù)都加上同一個非零常數(shù),那么這組數(shù)據的平均數(shù)和方差都改變;

則正確命題有( )個

A. B. C. D.

【答案】A

【解析】 由題意,(1)中,顯然均為假,根據“為真,為假,為真”可得為假命題,為真命題.所以是錯誤的;

(2)中,曲線表示橢圓滿足 ,解得 ,所以是錯誤的;

(3)中命題,則的否命題為:,則,所以是錯誤的;

(4)中,根據平均數(shù)與方差的計算公式,平均數(shù)改變,方差不變;故不正確;所以是錯誤的,綜上可知,正確命題的個數(shù)為0個,故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,銳角和鈍角的終邊分別與單位圓交于兩點.

(Ⅰ)如果點縱坐標分別為,求;

(Ⅱ)若軸上異于的點,且,求點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求滿足下列條件的直線的方程:

(1)直線經過點,并且它的傾斜角等于直線的傾斜角的2倍,求直線的方程;

(2)直線過點,并且在軸上的截距是軸上截距的,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列{an}中,a2=6,a3+a6=27.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}的通項公式為 ,求數(shù)列{anbn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,⊥平面,底面為正方形,的中點,.

(1)求證:;

(2)邊上是否存在一點,使得//平面?若存在,求的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx-)+1(A>0, ω>0)與ω=cosωx的部分圖象如圖所示。

(1)求A,a,b的值及函數(shù)f(x)的遞增區(qū)間;

(2)若函數(shù)y= g(x-m)(m>)與y= f(x)+ f(x-)的圖象的對稱軸完全相同,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= (a>0且a≠1)在R上單調遞減,且關于x的方程|f(x)|=2﹣x恰好有兩個不相等的實數(shù)解,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面內兩定點,動點,滿足,動點的軌跡為曲線,給出下列五個命題:

①存在,使曲線過坐標原點;

②對于任意,曲線軸有三個交點;

③曲線關于軸對稱,但不關于軸對稱;

④若三點不共線,則周長最小值為

⑤曲線上與不共線的任意一點關于原點對稱的點為,則四邊形的面積不大于.

其中真命題的序號是__________(填上所有正確命題的序號).

查看答案和解析>>

同步練習冊答案