【題目】如圖,三棱柱中,側(cè)面底面,,,且,點(diǎn),,分別為,,的中點(diǎn).
(Ⅰ)求證:平面.
(Ⅱ)求證:平面.
(Ⅲ)寫出四棱錐的體積.(只寫出結(jié)論,不需要說明理由)
【答案】(1)見解析;(2)見解析;(3).
【解析】試題分析:(1)由三線合一得A1D⊥AC,再利用面面垂直的性質(zhì)得出A1D⊥平面ABC;
(2)取B1C1的中點(diǎn)為G,連結(jié)FG,GB,則可證明四邊形FGBE為平行四邊形,從而EF∥BG,于是EF∥平面BB1C1C;
(3)過A1作A1M⊥CC1,垂足為M,則可證明A1M⊥平面BCC1B1.于是A1M為四棱錐A1﹣BB1C1C的高,底面為矩形,代入體積公式計(jì)算即可.
(1)證明:∵,
∴是等邊三角形,
在等邊中,
是邊的中點(diǎn),
∴,
又∵側(cè)面底面,
側(cè)面底面.
側(cè)面,
∴平面.
(2)取中點(diǎn),連接,,
∵,,分別是,,中點(diǎn),
∴,
∴四邊形是平行四邊形,
∴.
又∵平面,
平面,
∴平面,
(3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()過點(diǎn),且離心率為,過點(diǎn)的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的的標(biāo)準(zhǔn)方程;
(Ⅱ)已知為坐標(biāo)原點(diǎn),且,求面積的最大值以及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCO的頂點(diǎn)C、A分別在x軸、y軸上,BC是菱形BDCE的對角線,若∠D=60°,BC=2,則點(diǎn)D的坐標(biāo)是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,則|a﹣b+c|+|2a+b|=( 。
A.a+b
B.a﹣2b
C.a﹣b
D.3a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的對稱軸為坐標(biāo)軸,離心率為,且一個焦點(diǎn)坐標(biāo)為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓相交于兩點(diǎn),以線段為鄰邊作平行四邊形,其中點(diǎn)在橢圓上, 為坐標(biāo)原點(diǎn),求點(diǎn)到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中, ,直線與曲線交于兩點(diǎn).
(1)求的值;
(2)已知點(diǎn),且,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過橢圓的右焦點(diǎn)作直線,使,又與交于點(diǎn),設(shè)直線與橢圓的兩個交點(diǎn)由上至下依次為, .
(1)若與所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;
(2)求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com