【題目】三棱柱,側(cè)棱與底面垂直,,,,分別是,的中點(diǎn).
()求證:平面.
()求證:平面平面.
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)欲證MN||平面BCC1B1,根據(jù)直線與平面平行的判定定理可知只需證MN與平面BCC1B1內(nèi)一直線平行即可,而連接BC1,AC1.根據(jù)中位線定理可知MN||BC1,又MN平面BCC1B1滿足定理所需條件;(2)證明MN⊥BC1,MN⊥AC1,即可證明MN⊥平面ABC1,從而證明平面MAC1⊥平面ABC1.
()連接,.
在中,∵,是,的中點(diǎn),
∴,
又∵平面,
∴平面.
()∵三棱柱中,側(cè)棱與底面垂直,
∴四邊形是正方形,
∴,
∴,
連接,,則≌,
∴,
∵
∴,
∵,
∴平面,
∵平面,
∴平面平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若存在唯一整數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,過作平面,再過作于點(diǎn),過作于點(diǎn).
(Ⅰ)求證: .
(Ⅱ)若平面交于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2016年龍巖市初中體育中考中,隨意抽取某校5位同學(xué)一分鐘跳繩的次數(shù)分別為:158,160,154,158,170,則由這組數(shù)據(jù)得到的結(jié)論錯(cuò)誤的是( 。
A.平均數(shù)為160
B.中位數(shù)為158
C.眾數(shù)為158
D.方差為20.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在生產(chǎn)過程中,測(cè)得纖維產(chǎn)品的纖度(表示纖維粗細(xì)的一種量)共有100個(gè)數(shù)據(jù),將數(shù)據(jù)分組如表:
分組 | 頻數(shù) |
合計(jì) |
(1)畫出頻率分布表,并畫出頻率分布直方圖;
(2)估計(jì)纖度落在中的概率及纖度小于的概率是多少?
(3)從頻率分布直方圖估計(jì)出纖度的眾數(shù)、中位數(shù)和平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面底面,,,且,點(diǎn),,分別為,,的中點(diǎn).
(Ⅰ)求證:平面.
(Ⅱ)求證:平面.
(Ⅲ)寫出四棱錐的體積.(只寫出結(jié)論,不需要說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是某公交公司1路車從起點(diǎn)站A站途經(jīng)B站和C站,最終到達(dá)終點(diǎn)站D站的格點(diǎn)站路線圖.(8×8的格點(diǎn)圖是由邊長(zhǎng)為1的小正方形組成)
(1)求1路車從A站到D站所走的路程(精確到0.1);
(2)在圖2、圖3和圖4的網(wǎng)格中各畫出一種從A站到D站的路線圖.(要求:①與圖1路線不同、路程相同;②途中必須經(jīng)過兩個(gè)格點(diǎn)站;③所畫路線圖不重復(fù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com