分析 由題意直線2ax-by+2=0(a,b∈R+)經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),從而a+b=1,進(jìn)而3a+2=(3a+2)(a+b),由此能求出3a+2的最小值.
解答 解:∵圓 x2+y2+2x-4y+1=0,關(guān)于直線2ax-by+2=0(a,b∈R+)對(duì)稱,
∴直線2ax-by+2=0(a,b∈R+)經(jīng)過圓x2+y2+2x-4y+1=0的圓心(-1,2),
∴-2a-2b+2=0,即a+b=1,
∴3a+2=(3a+2)(a+b)=2a+3ba+5≥2√2a•3ba+5=5+2√6.
當(dāng)且僅當(dāng)2a2=3ba時(shí)取等號(hào),
∴3a+2的最小值為5+2√6.
故答案為:5+2√6.
點(diǎn)評(píng) 本題考查代數(shù)式的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)和基本不等式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2\sqrt{2}-1 | B. | 2\sqrt{2}+1 | C. | 2\sqrt{2}+2 | D. | 2\sqrt{2}-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 320 | B. | 160 | C. | 96 | D. | 60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 2 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com