【題目】汽車急剎車的停車距離與諸多因素有關(guān),其中最為關(guān)鍵的兩個(gè)因素是駕駛員的反應(yīng)時(shí)間和汽車行駛的速度.設(shè)d表示停車距離,表示反應(yīng)距離,表示制動(dòng)距離,則.下圖是根據(jù)美國公路局公布的試驗(yàn)數(shù)據(jù)制作的停車距離示意圖,對應(yīng)的汽車行駛的速度與停車距離的表格如下圖所示
序號(hào) | |||||||
(1)根據(jù)表格中的數(shù)據(jù),建立停車距離與汽車速度的函數(shù)模型.可選擇模型一:或模型二:(其中v為汽車速度,a,b
(2)通過計(jì)算時(shí)的停車距離,分析選擇哪一個(gè)函數(shù)模型的擬合效果更好.
(參考數(shù)據(jù):;;.)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)函數(shù)的零點(diǎn)個(gè)數(shù);
(2)當(dāng)時(shí),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說明理由;
(3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)在上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則下列判斷正確的是( )
A.為奇函數(shù)
B.對任意,,則有
C.對任意,則有
D.若函數(shù)有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,,,分別為,的中點(diǎn).
(1)求正四棱錐的全面積;
(2)若平面與棱交于點(diǎn),求平面與平面所成銳二面角的大。ㄓ梅慈呛瘮(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其最小正周期為 .
(1)求 的表達(dá)式;
(2)將函數(shù)的圖象向右平移個(gè)單位長度后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù) 的圖象,若關(guān)于 的方程 在區(qū)間 上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,分別為,的中點(diǎn),,如圖1.以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)的位置,如圖2.
如圖1 如圖2
(1)證明:平面平面;
(2)若平面平面,求直線與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(1) 求拋物線的方程;
(2) 當(dāng)點(diǎn)為直線上的定點(diǎn)時(shí),求直線的方程;
(3) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com