設(shè),分別是橢圓的左右焦點(diǎn),M是C上一點(diǎn)且與x軸垂直,直線與C的另一個(gè)交點(diǎn)為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.
(1);(2),.
試題分析:本題第(1)問(wèn),可結(jié)合與x軸垂直,由勾股定理及橢圓定義求出橢圓的離心率;對(duì)第(2)問(wèn),觀察到是三角形的中位線,然后結(jié)合向量的坐標(biāo)運(yùn)算及橢圓方程,可求出a,b.
試題解析:(1)由題意知,,所以,由勾股定理可得:,由橢圓定義可得:=,解得C的離心率為。
(2)由題意,原點(diǎn)O為的中點(diǎn),∥y軸,所以直線與y軸的交點(diǎn)D(0,2)是線段的中點(diǎn),故,即,由,設(shè),由題意知,則
,即,代入C的方程得,將代入得:,解得,.
【易錯(cuò)點(diǎn)】對(duì)第(1)問(wèn),較容易,大部分同學(xué)都能計(jì)算出;對(duì)第(2)問(wèn),一部分同學(xué)考慮不到中位線,
容易聯(lián)立方程組求解而走彎路,并且容易出現(xiàn)計(jì)算失誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:)的左焦點(diǎn)為,離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),T為直線上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.當(dāng)四邊形OPTQ是平行四邊形時(shí),求四邊形OPTQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為,上頂點(diǎn)為B,拋物線分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,相交于直線上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動(dòng)直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

F1,F(xiàn)2是橢圓=1的左、右兩焦點(diǎn),P為橢圓的一個(gè)頂點(diǎn),若△PF1F2是等邊三角形,則a2=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)分別是橢圓的左右焦點(diǎn),上一點(diǎn)且軸垂直,直線的另一個(gè)交點(diǎn)為
(1)若直線的斜率為,求的離心率;
(2)若直線軸上的截距為,且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C:的左、右焦點(diǎn)為、,離心率為,過(guò)的直線交C于A、B兩點(diǎn),若的周長(zhǎng)為,則C的方程為
A.    B.   C.   D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是平面兩定點(diǎn),點(diǎn)滿足,則點(diǎn)的軌跡方程是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的兩頂點(diǎn)為,且左焦點(diǎn)為F,是以角B為直角的直角三角形,則橢圓的離心率為 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1,F(xiàn)2.若成等比數(shù)列,則此橢圓的離心率為________.(離心率)

查看答案和解析>>

同步練習(xí)冊(cè)答案