已知橢圓C:)的左焦點為,離心率為.
(1)求橢圓C的標準方程;
(2)設O為坐標原點,T為直線上任意一點,過F作TF的垂線交橢圓C于點P,Q.當四邊形OPTQ是平行四邊形時,求四邊形OPTQ的面積.
(1) ;(2)

試題分析:(1)由已知得:,,所以,再由可得,從而得橢圓的標準方程. )橢圓方程化為.設PQ的方程為,代入橢圓方程得:.面積,而,所以只要求出的值即可得面積.因為四邊形OPTQ是平行四邊形,所以,即.
再結(jié)合韋達定理即可得的值.
試題解析:(1)由已知得:,所以
又由,解得,所以橢圓的標準方程為:.
(2)橢圓方程化為.
設T點的坐標為,則直線TF的斜率.
時,直線PQ的斜率,直線PQ的方程是
時,直線PQ的方程是,也符合的形式.
代入橢圓方程得:.
其判別式.
,
.
因為四邊形OPTQ是平行四邊形,所以,即.
所以,解得.
此時四邊形OPTQ的面積
.
【考點定位】1、直線及橢圓的方程;2、直線與圓錐曲線的位置關系;3、三角形的面積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

,分別是橢圓的左右焦點,M是C上一點且與x軸垂直,直線與C的另一個交點為N.
(1)若直線MN的斜率為,求C的離心率;
(2)若直線MN在y軸上的截距為2,且,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的一個焦點為F(0,1),離心率,則橢圓的標準方程為(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓=1的焦點是F1,F(xiàn)2,如果橢圓上一點P滿足PF1⊥PF2,則下面結(jié)論正確的是(  )
A.P點有兩個B.P點有四個
C.P點不一定存在 D.P點一定不存在

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓x2+my2=1的焦點在y軸上,長軸長是短軸長的兩倍,則m的值為(  )
A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率分別為橢圓的長軸和短軸的端點,中點,為坐標原點,且.
(1)求橢圓的方程;
(2)過點的直線交橢圓于兩點,求面積最大時,直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,橢圓的方程為,雙曲線的方程為,的離心率之積為,則的漸近線方程為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,點在橢圓上.
(1)求橢圓C的方程;
(2)設橢圓的左右頂點分別是A、B,過點的動直線與橢圓交于M,N兩點,連接AN、BM相交于G點,試求點G的橫坐標的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線與橢圓相交于兩點,點是線段上的一點,且點在直線上.
(1)求橢圓的離心率;
(2)若橢圓的焦點關于直線的對稱點在單位圓上,求橢圓的方程.

查看答案和解析>>

同步練習冊答案