精英家教網 > 高中數學 > 題目詳情
ab是兩個互相垂直的單位向量,問當k為整數時,向量m=ka+b與向量n=a+kb的夾角能否等于60°?證明你的結論.

解析:假設夾角等于60°,

∵|m|2=|ka+b|2=(ka+b)2=k2+1,

|n|2=|a+kb|2=(a+kb)2=k2+1,

m·n=(ka+b)·(a+kb)=2k,

∴2k=××cos60°,

即4k=k2+1,解得k=2±,這與k為整數矛盾.

∴m與n的夾角不能等于60°.

練習冊系列答案
相關習題

科目:高中數學 來源:訓練必修四數學人教A版 人教A版 題型:044

ab是兩個互相垂直的單位向量,問當k為整數時,向量mkab與向量na+kb的夾角能否為60°?證明你的結論.

查看答案和解析>>

科目:高中數學 來源:設計必修四數學蘇教版 蘇教版 題型:047

ab是兩個互相垂直的單位向量,問當k為整數時,向量m=ka+b與向量na+kb的夾角能否為60°?證明你的結論.

查看答案和解析>>

科目:高中數學 來源:設計必修四數學人教A版 人教A版 題型:047

ab是兩個互相垂直的單位向量,問當k為整數時,向量m=kab與向量n=a+kb的夾角能否為60°,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

ab是兩個互相垂直的單位向量,問當k為整數時,向量m=ka+b與向量n=a+kb的夾角能否為60°?證明你的結論.

查看答案和解析>>

同步練習冊答案