20.(1+tan18°)(1+tan27°)的值是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 要求的式子即  1+tan18°+tan27°+tan18°tan27°,再把tan18°+tan27°=tan45°(1-tan18°tan27°)代入,化簡(jiǎn)可得結(jié)果.

解答 解:(1+tan18°)(1+tan27°)
=1+tan18°+tan27°+tan18°tan27°
=1+tan45°(1-tan18°tan27°)+tan18°tan27°
=2,
故選C.

點(diǎn)評(píng) 本題主要考查兩角和差的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若3a=5b=A(ab≠0),且$\frac{1}{a}$+$\frac{1}$=2,則A=$\sqrt{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,∠BCD=60°,PD⊥平面ABCD,PD=AD=CD=1,點(diǎn)E、F分別為AB和PD的中點(diǎn).
(1)求證:直線AF∥平面PEC;
(2)求PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n2+n(n∈N*).
(1)求證:數(shù)列{$\frac{{a}_{n}}{n}$}為等差數(shù)列;
(2)若數(shù)列{bn}滿足bn=$\frac{2n+1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=-2sin2x+sin2x+1,給出下列4個(gè)命題:
①直線x=$\frac{π}{8}$是函數(shù)圖象的一條對(duì)稱軸;
②若x∈[0,$\frac{π}{2}$],則f(x)的值域是[0,$\sqrt{2}$];
③在區(qū)間[$\frac{π}{8}$,$\frac{5π}{8}$]上是減函數(shù);
④函數(shù)f(x)的圖象可由函數(shù)y=$\sqrt{2}$sin2x的圖象向左平移$\frac{π}{4}$而得到.
其中正確命題序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={1,2,3},B={x|-1<x≤2,x∈N},則A∪B={0,1,2,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖是一個(gè)空間幾何體的三視圖,該幾何體的外接球的體積記為V1,俯視圖繞底邊所在直線旋轉(zhuǎn)一周形成的幾何體的體積記為V2,則V1:V2=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在如表數(shù)表中,已知每行、每列中的數(shù)都成等差數(shù)列,那么,位于表中的第n行、第(n+1)列的數(shù)是(  )
第1列第2列第3列
第1行123
第2行246
第3行369
A.n2-n+1B.n2-nC.n2+nD.n2+n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f′(x)是f(x)的導(dǎo)函數(shù),f′(x)>2f(x)(x∈R),f($\frac{1}{2}$)=e,則f(lnx)<x2的解集為( 。
A.(0,$\frac{e}{2}$)B.($\frac{e}{2}$,$\sqrt{e}$)C.($\frac{1}{e}$,$\frac{e}{2}$)D.(0,$\sqrt{e}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案