12.如圖是一個空間幾何體的三視圖,該幾何體的外接球的體積記為V1,俯視圖繞底邊所在直線旋轉一周形成的幾何體的體積記為V2,則V1:V2=4$\sqrt{2}$.

分析 判斷三視圖復原的幾何體的形狀,底面為等腰直角三角形,一條側棱垂直底面的一個頂點,結合數(shù)據(jù)求出外接球的半徑,由此能求出結果.

解答 解:三視圖復原的幾何體如圖,
它是底面為等腰直角三角形,一條側棱垂直底面的一個頂點,
它的外接球,就是擴展為長方體的外接球,
外接球的直徑是2$\sqrt{2}$,
該幾何體的外接球的體積V1=$\frac{4}{3}$π($\sqrt{2}$)3=$\frac{8\sqrt{2}}{3}$π.
V2=2×($\frac{1}{3}×π×{1}^{2}×1$)=$\frac{2}{3}$π,
∴V1:V2=$\frac{8\sqrt{2}}{3}$π:$\frac{2}{3}$π=4$\sqrt{2}$.
故答案為:4$\sqrt{2}$.

點評 本題考查三視圖求幾何體的外接球的體積,考查空間想象能力,計算能力,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.函數(shù)y=($\frac{1}{2}$)${\;}^{{x}^{2}}$+4x的值域為(  )
A.[0,16]B.(0,16]C.(16,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在直三棱柱ABC-A1B1C1中,平面A1BC丄側面A1AB B1,且 AA1=AB=2.
(1)求證:AB丄BC;
(2)若直線AC與面A1BC所成的角為$\frac{π}{6}$,求四棱錐A1-BB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.(1+tan18°)(1+tan27°)的值是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知A={-1,2},B={x|mx+1=0},若A∪B=A,則實數(shù)m的取值所成的集合是( 。
A.$\left\{{-1,\frac{1}{2}}\right\}$B.$\left\{{-\frac{1}{2},1}\right\}$C.$\left\{{-1,0,\frac{1}{2}}\right\}$D.$\left\{{-\frac{1}{2},0,1}\right\}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.過點P(-1,0)作曲線f(x)=ex的切線l.
(1)求切線l的方程;
(2)若直線l與曲線y=$\frac{a}{f(x)}$(a∈R)交于不同的兩點A(x1,y1),B(x2,y2),求證:x1+x2<-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.等比數(shù)列{an}中,a3=-1,求a1a2a3a4a5的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)是定義在R上的奇函數(shù),當x>0時,f(x)=-x2-x,則f(-2)=( 。
A.6B.-6C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知U=R,A={x|-5≤x<1},B={x|-2<x≤2},P={x|x≤-1或x≥$\frac{3}{2}$},求:
(1)A∪B;        
(2)(A∩B)∩(∁UP).

查看答案和解析>>

同步練習冊答案