19.已知 $a={({\frac{1}{3}})^3},b={x^3},c=lnx$,當(dāng)x>2時(shí),a,b,c的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

分析 利用函數(shù)的單調(diào)性即可得出.

解答 解:$a=(\frac{1}{3})^{3}$<1,取x=e時(shí),b=e3>1,c=lne=1.
所以a<c<b.
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={y|y>a+3,或y<a},B={y|2≤y≤4},若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.把函數(shù)y=sin(2x+$\frac{π}{6}$)圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再將圖象向右平移$\frac{π}{3}$個(gè)單位,得到函數(shù)y=g(x),那么g($\frac{π}{3}$)的值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}+\frac{1}{3}{a_n}=1$(n∈N+).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4(1-Sn+1)(n∈N+),${T_n}=\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使${T_n}≥\frac{504}{1009}$成立的最小的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐S-ABCD中,四邊形為ABCD矩形,E為SA的中點(diǎn),SA=SB,AB=2$\sqrt{3}$,BC=3.
(1)證明:SC∥平面BDE;
(2)若BC⊥SB,求三棱錐C-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點(diǎn)分別是F1(-c,0),F(xiàn)2(c,0),M,N兩點(diǎn)在雙曲線上,且MN∥F1F2,|F1F2|=3|MN|,線段F1N交雙曲線C于點(diǎn)Q,且Q是線段F1N的中點(diǎn),則雙曲線C的離心率為( 。
A.3B.$2\sqrt{2}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{\sqrt{5}+1}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,已知雙曲線$C:\frac{x^2}{a^2}-{y^2}=1(a>0)$的右焦點(diǎn)F,點(diǎn)A,B分別在C的兩條漸近線上,AF⊥x軸,AB⊥OB,BF∥OA(O為坐標(biāo)原點(diǎn)).求雙曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知平面內(nèi)的一條直線與平面的一條斜線的夾角為60°,這條直線與斜線在平面內(nèi)的射影的夾角為45°,則斜線與平面所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果圓(x-a)2+(y-a)2=8上總存在兩個(gè)點(diǎn)到原點(diǎn)的距離為$\sqrt{2}$,則實(shí)數(shù)a的取值范圍是( 。
A.(-3,3)B.(-1,1)C.(-3,1)D.(-3,-1)∪(1,3)

查看答案和解析>>

同步練習(xí)冊答案