【題目】已知、是橢圓:的左右焦點(diǎn),焦距為6,橢圓上存在點(diǎn)使得,且的面積為9.
(Ⅰ)求的方程;
(Ⅱ)過(guò)的直線與橢圓相交于,兩點(diǎn),直線與軸不重合,是軸上一點(diǎn),且,求點(diǎn)縱坐標(biāo)的取值集合.
【答案】(Ⅰ);(Ⅱ).
【解析】
(Ⅰ)由已知列方程組,解出a,再由確定橢圓方程.
(Ⅱ)取MN的中點(diǎn)T,由,化為,即P為直線MN的垂直平分線與y軸的交點(diǎn).先求MN斜率不存在時(shí)P的縱坐標(biāo);當(dāng)MN斜率存在時(shí)設(shè)MN:,代入橢圓方程,利用韋達(dá)定理求MN的中點(diǎn)T的坐標(biāo),建立PT的方程,可求P的縱坐標(biāo)與k的關(guān)系式,再利用基本不等式進(jìn)行求解.
解:(Ⅰ)由題意得:
,
,
∴,
,
∴,又,∴,
∴的方程為.
(Ⅱ)設(shè)的坐標(biāo)為,的中點(diǎn)為,
當(dāng)的斜率存在時(shí),則,的方程為.
由題意知:,
∴,
設(shè),,
∴,
∴,∴,
∴,
∴,∴.
當(dāng)時(shí),,∴,
當(dāng)時(shí),,∴.
當(dāng)的斜率不存在時(shí),,
∴.
∴的縱坐標(biāo)的取值集合為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“科技引領(lǐng),布局未來(lái)”科技研發(fā)是企業(yè)發(fā)展的驅(qū)動(dòng)力量。年,某企業(yè)連續(xù)年累計(jì)研發(fā)投入搭億元,我們將研發(fā)投入與經(jīng)營(yíng)投入的比值記為研發(fā)投入占營(yíng)收比,這年間的研發(fā)投入(單位:十億元)用右圖中的折現(xiàn)圖表示,根據(jù)折線圖和條形圖,下列結(jié)論錯(cuò)誤的使( )
A. 年至年研發(fā)投入占營(yíng)收比增量相比年至年增量大
B. 年至年研發(fā)投入增量相比年至年增量小
C. 該企業(yè)連續(xù)年研發(fā)投入逐年增加
D. 該企業(yè)來(lái)連續(xù)年來(lái)研發(fā)投入占營(yíng)收比逐年增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,離心率為,是橢圓上位于第一象限內(nèi)的任意一點(diǎn),為坐標(biāo)原點(diǎn),關(guān)于的對(duì)稱點(diǎn)為,,圓:.
(1)求橢圓和圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)作與圓相切于點(diǎn),使得點(diǎn),點(diǎn)在的兩側(cè).求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時(shí)也解決了很多勞動(dòng)力的就業(yè)問(wèn)題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計(jì)解決退伍軍人轉(zhuǎn)業(yè)為兼職或?qū)B毸緳C(jī)三百多萬(wàn)人次,梁某即為此類網(wǎng)約車司機(jī),據(jù)梁某自己統(tǒng)計(jì)某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、.
(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
(2)網(wǎng)約車計(jì)費(fèi)細(xì)則如下:起步價(jià)為5元,行駛路程不超過(guò)時(shí),租車費(fèi)為5元,若行駛路程超過(guò),則按每超出(不足也按計(jì)程)收費(fèi)3元計(jì)費(fèi).依據(jù)以上條件,計(jì)算梁某一天中出車一次收入的均值和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為 曲線的極坐標(biāo)方程為,與交于點(diǎn).
(1)寫出曲線的普通方程及直線的直角坐標(biāo)方程,并求;
(2)設(shè)為曲線上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某個(gè)公園有個(gè)池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚(yú),分別在AB、BC、CA上取點(diǎn)D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現(xiàn)在準(zhǔn)備新建造一個(gè)荷塘,分別在AB,BC,CA上取點(diǎn)D,E,F,如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F2在坐標(biāo)軸上,離心率為,且過(guò)點(diǎn).
(1)求雙曲線的方程;
(2)若點(diǎn)M(3,m)在雙曲線上,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將個(gè)不同的紅球和個(gè)不同的白球,放入同一個(gè)袋中,現(xiàn)從中取出個(gè)球.
(1)若取出的紅球的個(gè)數(shù)不少于白球的個(gè)數(shù),則有多少種不同的取法;
(2)取出一個(gè)紅球記分,取出一個(gè)白球記分,若取出個(gè)球的總分不少于分,則有多少種不同的取法;
(3)若將取出的個(gè)球放入一箱子中,記“從箱子中任意取出個(gè)球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個(gè)紅球并且恰有一次取到個(gè)白球的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com