【題目】某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)現(xiàn)在準(zhǔn)備養(yǎng)一批供游客觀賞的魚,分別在AB、BCCA上取點D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積SDEF的最大值;

(2)現(xiàn)在準(zhǔn)備新建造一個荷塘,分別在AB,BC,CA上取點D,E,F,如圖(2),建造△DEF

連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.

【答案】1;(2百米.

【解析】

試題(1)求△DEF 面積SDEF的最大值,先把△DEF 面積用一個參數(shù)表示出來,由于它是直角三角形,故只要求出兩直角邊DEEF,直角△ABC中,可得,由于EF‖AB,EF⊥ED,那么有,因此我們可用CE來表示FE,DE.從而把SDEF表示為CE的函數(shù),然后利用函數(shù)的知識(或不等式知識)求出最大值;(2).等邊△DEF可由兩邊EFED確定,我們設(shè),想辦法也把與一個參數(shù)建立關(guān)系式,關(guān)鍵是選取什么為參數(shù),由于等邊△DEF位置不確定,我們可選取為參數(shù),建立起的關(guān)系.,則,中應(yīng)用正弦定理可建立所需要的等量關(guān)系.

試題解析:(1中,,百米,百米.

,可得,

,

設(shè),則米,

中,米,CEF的距離米,

∵CAB的距離為米,

DEF的距離為米,

可得,

,當(dāng)且僅當(dāng)時等號成立,

當(dāng)時,即EAB中點時,的最大值為7

2)設(shè)正的邊長為,

,

設(shè),可得

,,

中,,

,化簡得, 12

(其中是滿足的銳角),

邊長最小值為百米. 14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸端點為,,點是橢圓上的動點,且不與,重合,點滿足,.

(Ⅰ)求動點的軌跡方程;

(Ⅱ)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過M1),N1)兩點,且圓心C在直線x+y30上,過點A(﹣1,0)的動直線l與圓C相交于P、Q兩點.

(Ⅰ)求圓C的方程;

(Ⅱ)當(dāng)|PQ|4時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點分別為,下頂點為為坐標(biāo)原點,點到直線的距離為,為等腰直角三角形.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)直線與橢圓交于兩點,若直線與直線的斜率之和為,證明:直線恒過定點,并求出該定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是橢圓的左右焦點,焦距為6,橢圓上存在點使得,且的面積為9.

(Ⅰ)求的方程;

(Ⅱ)過的直線與橢圓相交于兩點,直線軸不重合,軸上一點,且,求點縱坐標(biāo)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在,,.

(1)求角的大小;

(2)設(shè)數(shù)列滿足,項和為,,的值.

【答案】(1);(2).

【解析】試題分析:

(1)由題意結(jié)合三角形內(nèi)角和為可得.由余弦定理可得,,結(jié)合勾股定理可知為直角三角形,,.

(2)結(jié)合(1)中的結(jié)論可得 . ,據(jù)此可得關(guān)于實數(shù)k的方程,解方程可得,.

試題解析:

(1)由已知,又,所以.又由,

所以,所以,

所以為直角三角形,,.

(2) .

所以 ,得

,所以,所以,所以.

型】解答
結(jié)束】
18

【題目】已知點是平行四邊形所在平面外一點,如果,,.(1)求證:是平面的法向量;

(2)求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,的中點.

(1)求證:;

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點和橢圓. 直線與橢圓交于不同的兩點.

(Ⅰ) 求橢圓的離心率;

(Ⅱ) 當(dāng)時,求的面積;

(Ⅲ)設(shè)直線與橢圓的另一個交點為,當(dāng)中點時,求的值 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩焦點為,,且過點,直線交曲線兩點,為坐標(biāo)原點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若不過點且不平行于坐標(biāo)軸,記線段的中點為,求證:直線的斜率與的斜率的乘積為定值;

3)若直線過點,求面積的最大值,以及取最大值時直線的方程.

查看答案和解析>>

同步練習(xí)冊答案