【題目】設橢圓的左、右焦點分別為,,下頂點為,為坐標原點,點到直線的距離為,為等腰直角三角形.
(1)求橢圓的標準方程;
(2)直線與橢圓交于,兩點,若直線與直線的斜率之和為,證明:直線恒過定點,并求出該定點的坐標.
【答案】(1);(2)見解析
【解析】
(1)利用表示出點到直線的距離;再利用和的關系得到方程,求解得到標準方程;(2)當直線斜率存在時,假設直線方程,利用斜率之和為得到與的關系,將直線方程化為,從而得到定點;當斜率不存在時,發(fā)現直線也過該定點,從而求得結果.
(1)解:由題意可知:直線的方程為,即
則
因為為等腰直角三角形,所以
又
可解得,,
所以橢圓的標準方程為
(2)證明:由(1)知
當直線的斜率存在時,設直線的方程為
代入,得
所以,即
設,,則,
因為直線與直線的斜率之和為
所以
整理得
所以直線的方程為
顯然直線經過定點
當直線的斜率不存在時,設直線的方程為
因為直線與直線的斜率之和為,設,則
所以,解得
此時直線的方程為
顯然直線也經過該定點
綜上,直線恒過點
科目:高中數學 來源: 題型:
【題目】如圖所示,曲線由部分橢圓:和部分拋物線:連接而成,與的公共點為,,其中所在橢圓的離心率為.
(Ⅰ)求,的值;
(Ⅱ)過點的直線與,分別交于點,(,,,中任意兩點均不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】社區(qū)服務是高中學生社會實踐活動的一個重要內容,漢中某中學隨機抽取了100名男生、100名女生,了解他們一年參加社區(qū)服務的時間,按,,,,(單位:小時)進行統計,得出男生參加社區(qū)服務時間的頻率分布表和女生參加社區(qū)服務時間的頻率分布直方圖.
(1)完善男生參加社區(qū)服務時間的頻率分布表和女生參加社區(qū)服務時間的頻率分布直方圖.
抽取的100名男生參加社區(qū)服務時間的頻率分布表
社區(qū)服務時間 | 人數 | 頻率 |
0.05 | ||
20 | ||
0.35 | ||
30 | ||
合計 | 100 | 1 |
學生社區(qū)服務時間合格與性別的列聯表
不合格的人數 | 合格的人數 | |
男 | ||
女 |
(2)按高中綜合素質評價的要求,高中學生每年參加社區(qū)服務的時間不少于20個小時才為合格,根據上面的統計圖表,完成抽取的這200名學生參加社區(qū)服務時間合格與性別的列聯表,并判斷是否有以上的把握認為參加社區(qū)服務時間達到合格程度與性別有關,并說明理由.
(3)用以上這200名學生參加社區(qū)服務的時間估計全市9萬名高中學生參加社區(qū)服務時間的情況,并以頻率作為概率.
(i)求全市高中學生參加社區(qū)服務時間不少于30個小時的人數.
(ⅱ)對我市高中生參加社區(qū)服務的情況進行評價.
參考公式
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.002 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義向量的“相伴函數”為,函數的“相伴向量”為,其中O為坐標原點,記平面內所有向量的“相伴函數”構成的集合為S.
(1)設,求證:;
(2)已知且,求其“相伴向量”的模;
(3)已知為圓上一點,向量的“相伴函數”在處取得最大值,當點M在圓C上運動時,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】網約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據某著名網約車公司“滴滴打車”官網顯示,截止目前,該公司已經累計解決退伍軍人轉業(yè)為兼職或專職司機三百多萬人次,梁某即為此類網約車司機,據梁某自己統計某一天出車一次的總路程數可能的取值是20、22、24、26、28、,它們出現的概率依次是、、、、t、.
(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;
(2)網約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據以上條件,計算梁某一天中出車一次收入的均值和方差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】今年學雷鋒日,某中學計劃從高中三個年級選派4名教師和若干名學生去當學雷鋒文明交通宣傳志愿者,用分層抽樣法從高中三個年級的相關人員中抽取若干人組成文明交通宣傳小組,學生的選派情況如下:
年級 | 相關人數 | 抽取人數 |
高一 | 99 | |
高二 | 27 | |
高三 | 18 | 2 |
(Ⅰ)求,的值;
(Ⅱ)若從選派的高一、高二、高三年級學生中抽取3人參加文明交通宣傳,求他們中恰好有1人是高三年級學生的概率;
(Ⅲ)若4名教師可去、、三個學雷鋒文明交通宣傳點進行文明交通宣傳,其中每名教師去、、三個文明交通宣傳點是等可能的,且各位教師的選擇相互獨立.記到文明交通宣傳點的人數為,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某個公園有個池塘,其形狀為直角△ABC,∠C=90°,AB=2百米,BC=1百米.
(1)現在準備養(yǎng)一批供游客觀賞的魚,分別在AB、BC、CA上取點D,E,F,如圖(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面積S△DEF的最大值;
(2)現在準備新建造一個荷塘,分別在AB,BC,CA上取點D,E,F,如圖(2),建造△DEF
連廊(不考慮寬度)供游客休憩,且使△DEF為正三角形,求△DEF邊長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)求證:橢圓中斜率為的平行弦的中點軌跡必過橢圓中心;
(2)用作圖方法找出下面給定橢圓的中心;
(3)我們把由半橢圓與半橢圓合成的曲線稱作“果圓”,其中,,.如圖,設點,,是相應橢圓的焦點,,和,是“果圓” 與,軸的交點. 連結“果圓”上任意兩點的線段稱為“果圓”的弦.試研究:是否存在實數,使斜率為的“果圓”平行弦的中點軌跡總是落在某個橢圓上?若存在,求出所有可能的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著我國經濟的飛速發(fā)展,人民生活水平得到很大提高,汽車已經進入千千萬萬的家庭.大部分的車主在購買汽車時,會在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內的行駛里程,某汽車銷售經理作出如下統計:
購買了轎車(輛) | 購買了(輛) | |
歲以下車主 | ||
歲以下車主 |
表
圖
(I)根據表,是否有的把握認為年齡與購買的汽車車型有關?
(II)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數據用該組區(qū)間的中點值作代表);
(III)用表中的頻率估計概率,隨機調查名歲以下車主,設其中購買了轎車的人數為,求的分布列與數學期望.
附:,.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com