【題目】如圖,在直三棱柱中,,是的中點,.
(1)求證:平面;
(2)若異面直線和所成角的余弦值為,求四棱錐的體積.
【答案】(1)見證明;(2)3
【解析】
(1)連接,交于點,連結(jié),利用中位線定理證明平面。
(2)通過平移,表示出異面直線和所成角,結(jié)合正弦定理及三角形面積公式求得。所以可得解。
解法一:
(1)連結(jié),交于點,連結(jié).
在直三棱柱中,四邊形為平行四邊形,
所以為的中點,
又為的中點,所以,
又平面,平面,
所以平面.
(2)因為,為銳角,
所以為異面直線和所成的角,
所以由條件知,
在中,,,
,,
.
又平面,平面,,
所以,
,
,
所以.
解法二:(1)證明:取的中點,連結(jié),,,
在直三棱柱中,
四邊形為平行四邊形,又是的中點,
所以,所以四邊形是平行四邊形,
所以,又平面,平面,
所以平面,
因為,所以四邊形是平行四邊形,
所以,又平面,平面,
所以平面,
又,平面,
所以平面平面,
又平面,所以平面.
(2)過作于,
因為平面,平面,所以,
又,平面,所以平面.
因為,為銳角,
所以為異面直線和所成的角,
所以由條件知,
在中,,,
,,
,
又,,,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市小型機動車駕照“科二”考試中共有5項考查項目,分別記作①,②,③,④,⑤.
(1)某教練將所帶10名學(xué)員“科二”模擬考試成績進行統(tǒng)計(如表所示),并計算從恰有2項成績不合格的學(xué)員中任意抽出2人進行補測(只測不合格的項目),求補測項目種類不超過3()項的概率.
(2)“科二”考試中,學(xué)員需繳納150元的報名費,并進行1輪測試(按①,②,③,④,⑤的順序進行);如果某項目不合格,可免費再進行1輪補測;若第1輪補測中仍有不合格的項目,可選擇“是否補考”;若補考則需繳納300元補考費,并獲得最多2輪補測機會,否則考試結(jié)束;每1輪補測都按①,②,③,④,⑤的順序進行,學(xué)員在任何1輪測試或補測中5個項目均合格,方可通過“科二”考試,每人最多只能補考1次,某學(xué)院每輪測試或補考通過①,②,③,④,⑤各項測試的概率依次為,且他遇到“是否補考”的決斷時會選擇補考.
①求該學(xué)員能通過“科二”考試的概率;
②求該學(xué)員繳納的考試費用的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的一系列對應(yīng)值如下表:
(1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個解析式;
(2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時,方程 恰有兩個不同的解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),且=10
(1)求的解析式;
(2)判斷函數(shù)在上的單調(diào)性,并加以證明.
(3)函數(shù)在[-3,0)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且.
(1)求的解析式;
(2)判斷的單調(diào)性,并證明你的結(jié)論;
(3)解不等式 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(1)求函數(shù)及的解析式,并用函數(shù)單調(diào)性的定義證明:函數(shù)在上是減函數(shù);
(2)若關(guān)于的方程有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在用二次法求方程3x+3x-8=0在(1,2)內(nèi)近似根的過程中,已經(jīng)得到f(1)<0,f(1.5)>0,f(1.25)<0,則方程的根落在區(qū)間( 。
A. B. C. D. 不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中錯誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分條件
C.命題“若,則方程有實根”的逆命題是真命題
D.命題“若,則且”的否命題是“若,則或”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)求函數(shù)的周期;
(2)求函數(shù)的最大值,并求使函數(shù)取得最大值時x的集合;
(3)求函數(shù)的單調(diào)遞減區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com