【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);

②用反證法證明命題“若實數(shù),滿足,則都為0”時,“假設命題的結論不成立”的敘述是“假設都不為0”;

③把函數(shù)的圖象向右平移個單位長度,所得到的圖象的函數(shù)解析式為

④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.

其中所有正確命題的序號為__________

【答案】①③

【解析】對于①定義在R上的函數(shù)f(x)滿足f(2)>f(1),f(x)R上不一定是增函數(shù),f(x)一定不是R上的減函數(shù);故正確

對于②由于ab全為0(abR)”的否定為:ab至少有一個不為0”,故不正確;

對于③把函數(shù)的圖象向右平移個單位長度,所得到的圖象的函數(shù)解析式為y=sin2x,故正確,

對于④函數(shù)為奇函數(shù)f(x)+f(x)=02a=0,xR,2a=0a=0.因此a=0”函數(shù)為奇函數(shù)的充要條件,故不正確,

故答案為:①③。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】近幾年來,我國許多地區(qū)經(jīng)常出現(xiàn)干旱現(xiàn)象,為抗旱經(jīng)常要進行人工降雨,現(xiàn)由天氣預報得知,某地在未來5天的指定時間的降雨概率是:前3天均為,后2天均為,5天內(nèi)任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.

(1)求至少有1天需要人工降雨的概率;

(2)求不需要人工降雨的天數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間有關系,某農(nóng)科所對此關系進行了調(diào)查分析,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù), ,則對于不同的實數(shù),函數(shù)的單調(diào)區(qū)間個數(shù)不可能是( )

A. 1個 B. 2個 C. 3個 D. 5個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, 的導函數(shù).

(1)求的極值;

(2)證明:對任意實數(shù),都有恒成立;

(3)若時恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一家公司生產(chǎn)某種產(chǎn)品的年固定成本為6萬元,每生產(chǎn)1千件需另投入2.9萬元,設該公司一年內(nèi)生產(chǎn)該產(chǎn)品千件并全部銷售完,每千件的銷售收入為萬元,且.

(1)寫出年利潤(萬元)關于年產(chǎn)量(千件)的函數(shù)解析式;

(2)求該公司生產(chǎn)這一產(chǎn)品的最大年利潤及相應的年產(chǎn)量.(年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

(1) 求出4個人中恰有2個人去 參加甲游戲的概率;

(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;

(3)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,直線傾斜角是且過拋物線的焦點,直線被拋物線截得的線段長是16,雙曲線 的一個焦點在拋物線的準線上,則直線軸的交點到雙曲線的一條漸近線的距離是( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)=loga(2x2+x)(a>0,a≠1)在區(qū)間(0, )內(nèi)恒有f(x)>0,則f(x)的單調(diào)遞增區(qū)間是(
A.(﹣∞,﹣
B.
C.
D.(0,+∞)

查看答案和解析>>

同步練習冊答案