目前,在我國部分省市出現(xiàn)了人感染H7N9禽流感病毒,為有效防控,2013年4月下旬,北京疫苗研制工作進(jìn)入動(dòng)物免疫原性試驗(yàn)階段。假定現(xiàn)已研制出批號(hào)分別為1,2,3,4,5的五批疫苗,準(zhǔn)備在A、B、C三種動(dòng)物身上做試驗(yàn),給每種動(dòng)物做實(shí)驗(yàn)所選用的疫苗是從這五個(gè)批號(hào)中任選其中一個(gè)批號(hào)的疫苗.
(Ⅰ)求給三種動(dòng)物注射疫苗的批號(hào)互不相同的概率;
(Ⅱ)記給A、B、C三種動(dòng)物注射疫苗的批號(hào)最大數(shù)為,求的分布列和數(shù)學(xué)期望.

(Ⅰ) ;
(Ⅱ)的分布列為


1
2
3
4
5
P





 
數(shù)學(xué)期望為。

解析試題分析:(Ⅰ)                4分
(Ⅱ)的可能取值分別為1,2,3,4,5

,

的分布列為


1
2
3
4
5
P





 
數(shù)學(xué)期望為       12分
考點(diǎn):隨機(jī)變量的分布列及其數(shù)學(xué)期望。
點(diǎn)評(píng):典型題,統(tǒng)計(jì)中的抽樣方法,頻率直方圖,概率計(jì)算及分布列問題,是高考必考內(nèi)容及題型。古典概型概率的計(jì)算問題,關(guān)鍵是明確基本事件數(shù),往往借助于“樹圖法”,做到不重不漏。本題對(duì)計(jì)算能力要求較高,難度較大。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某普通高中共有教師人,分為三個(gè)批次參加研修培訓(xùn),在三個(gè)批次中男、女教師人數(shù)如下表所示:

 
第一批次
第二批次
第三批次
女教師



男教師



 
已知在全體教師中隨機(jī)抽取1名,抽到第二、三批次中女教師的概率分別是、
(Ⅰ)求的值;
(Ⅱ)為了調(diào)查研修效果,現(xiàn)從三個(gè)批次中按 的比例抽取教師進(jìn)行問卷調(diào)查,三個(gè)批次被選取的人數(shù)分別是多少?
(Ⅲ)若從(Ⅱ)中選取的教師中隨機(jī)選出兩名教師進(jìn)行訪談,求參加訪談的兩名教師“分別來自兩個(gè)批次”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲,乙兩人進(jìn)行射擊比賽,每人射擊次,他們命中的環(huán)數(shù)如下表:


5
8
7
9
10
6

6
7
4
10
9
9
(Ⅰ)根據(jù)上表中的數(shù)據(jù),判斷甲,乙兩人誰發(fā)揮較穩(wěn)定;
(Ⅱ)把甲6次射擊命中的環(huán)數(shù)看成一個(gè)總體,用簡單隨機(jī)抽樣方法從中抽取兩次命中的環(huán)數(shù)組成一個(gè)樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不超過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲乙兩班進(jìn)行消防安全知識(shí)競賽,每班出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對(duì)則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對(duì)的概率分別為,乙隊(duì)每人答對(duì)的概率都是.設(shè)每人回答正確與否相互之間沒有影響,用表示甲隊(duì)總得分.
(I)求隨機(jī)變量的分布列及其數(shù)學(xué)期望E();
(Ⅱ)求在甲隊(duì)和乙隊(duì)得分之和為4的條件下,甲隊(duì)比乙隊(duì)得分高的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知盒子中有4個(gè)紅球,2個(gè)白球,從中一次抓三個(gè)球
(1)求沒有抓到白球的概率;
(2)記抓到球中的紅球數(shù)為X ,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在1,2,3,…,9這9個(gè)自然數(shù)中,任取3個(gè)數(shù),
(1)記Y表示“任取的3個(gè)數(shù)中偶數(shù)的個(gè)數(shù)”,求隨機(jī)變量Y的分布列及其期望;
(2)記X為3個(gè)數(shù)中兩數(shù)相鄰的組數(shù),例如取出的數(shù)為1,2,3,則有這兩組相鄰的數(shù)1,2和2,3,此時(shí)X的值為2,求隨機(jī)變量X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在進(jìn)行一項(xiàng)擲骰子放球游戲中,規(guī)定:若擲出1點(diǎn),甲盒中放一球;
若擲出2點(diǎn)或3點(diǎn),乙盒中放一球;若擲出4點(diǎn)或5點(diǎn)或6點(diǎn),丙盒中放一球,前后共擲3
次,設(shè)分別表示甲,乙,丙3個(gè)盒中的球數(shù).
(1)求依次成公差大于0的等差數(shù)列的概率;
(2)記,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

)袋中裝有大小相同的黑球、白球和紅球共10個(gè)。已知從袋中任意摸出1個(gè)球,得到黑球的概率是;從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是
(1)求袋中各色球的個(gè)數(shù);
(2)從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望Eξ和方差Dξ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)從1,2,3,4,5五個(gè)數(shù)中依次取2個(gè)數(shù),求這兩個(gè)數(shù)的差的絕對(duì)值等于1的概率;
(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC邊上任取一點(diǎn)M,求 的概率.

查看答案和解析>>

同步練習(xí)冊答案