下面給出了四個(gè)類比推理:
(1)由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個(gè)向量則(
a
b
)•
c
=
a
•(
b
c
)”;
(2)“a,b為實(shí)數(shù),若a2+b2=0則a=b=0”類比推出“z1,z2為復(fù)數(shù),若
z
2
1
+
z
2
2
=0則z1=z2=0
”;
(3)“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
(4)“在平面內(nèi),過不在同一條直線上的三個(gè)點(diǎn)有且只有一個(gè)圓”類比推出“在空間中,過不在同一個(gè)平面上的四個(gè)點(diǎn)有且只有一個(gè)球”.
上述四個(gè)推理中,結(jié)論正確的個(gè)數(shù)有(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
考點(diǎn):類比推理
專題:推理和證明
分析:逐個(gè)驗(yàn)證:(1)向量要考慮方向.
(2)數(shù)集有些性質(zhì)以傳遞的,但有些性質(zhì)不能傳遞,因此,要判斷類比的結(jié)果是否正確,關(guān)鍵是要在新的數(shù)集里進(jìn)行論證,當(dāng)然要想證明一個(gè)結(jié)論是錯(cuò)誤的,也可直接舉一個(gè)反例,
(3,4)由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由圓的性質(zhì)類比推理到球的性質(zhì).
解答: (1)由向量的運(yùn)算可知(
 a•
b
)•
c
為與向量
c
共線的向量,而由向量的運(yùn)算可知
  a
•(
b
c
)
與向量
a
共線的向量,方向不同,故錯(cuò)誤.
(2)在復(fù)數(shù)集C中,若z1,z2∈C,z12+z22=0,則可能z1=1且z2=i.故錯(cuò)誤;
(3)平面中的三角形與空間中的三棱錐是類比對象;故正確.
(4)由圓的性質(zhì)類比推理到球的性質(zhì)由已知“平面內(nèi)不共線的3個(gè)點(diǎn)確定一個(gè)圓”,我們可類比推理出空間不共面4個(gè)點(diǎn)確定一個(gè)球,故正確
故選:B.
點(diǎn)評:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).但類比推理的結(jié)論不一定正確,還需要經(jīng)過證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式(x-5)2(x-4)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c是角A、B、C的對邊,已知b2=ac,且a2-c2=ac-bc,則∠A=
 
,△ABC為
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足
x≥0
y≥0
x-y-1≤0
x-2y+2≥0
,則z=3x-4y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-1<a3<1,0<a6<3,則S9的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α為第二象限角,且sinα=
4
5
,則tanα的值為( 。
A、-
3
4
B、-
4
3
C、
3
4
D、
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=|lnx|,若函數(shù)g(x)=f(x)-ax在區(qū)間(0,3]上有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,
1
e
B、(
ln3
3
,e)
C、(0,
ln3
3
]
D、[
ln3
3
,
1
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(3,4)和圓C:(x-2)2+y2=4,A,B是圓C上兩個(gè)動(dòng)點(diǎn),且|AB|=2
3
,則
OP
•(
OA
+
OB
)(O為坐標(biāo)原點(diǎn))的取值范圍是( 。
A、[3,9]
B、[1,11]
C、[6,18]
D、[2,22]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓W:
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,過右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為-1,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓W的方程.
(Ⅱ)設(shè)斜率為k的直線l與W相交于A,B兩點(diǎn),記△AOB面積的最大值為Sk,證明:S1=S2

查看答案和解析>>

同步練習(xí)冊答案