正方體的棱長為2,則異面直線與AC之間的距離為_________。

解析試題分析:如圖,連結(jié)BD交于AC于點O,再作,垂足為H,則OH為異面直線與AC之間的距離。因為,所以,求得OH=

考點:異面直線之間的距離
點評:求異面直線之間的距離,關(guān)鍵是找出它們的公垂線。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

在平面幾何里有射影定理:設(shè)△ABC的兩邊AB⊥AC,D是A點在BC上的射影,則AB2=BD·BC.拓展到空間,在四面體A—BCD中,DA⊥面ABC,點O是A在面BCD內(nèi)的射影,且O在面BCD內(nèi),類比平面三角形射影定理,△ABC,△BOC,△BDC三者面積之間關(guān)系為           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)是兩條不同的直線,是兩個不同的平面,則下列正確命題的序號是   .
①.若  , 則   ;      ②.若,則   ;
③.若,則;      ④.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

下列命題中正確的是              .(填上你認(rèn)為所有正確的選項)
①空間中三個平面,若,則;
②若為三條兩兩異面的直線,則存在無數(shù)條直線與都相交;
③球與棱長為正四面體各面都相切,則該球的表面積為;
④三棱錐中,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,正方體的棱長為1,的中點,為線段上的動點,過點的平面截該正方體所得的截面記為,則下列命題正確的是         (寫出所有正確命題的編號)。

①當(dāng)時,為四邊形
②當(dāng)時,為等腰梯形
③當(dāng)時,的交點滿足
④當(dāng)時,為六邊形
⑤當(dāng)時,的面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

是三條不同的直線, 是三個不同的平面,
①若都垂直,則    
②若,,則
③若,則   
④若與平面所成的角相等,則
上述命題中的真命題是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,在三棱錐中,,且,平面,過作截面分別交,且二面角的大小為,則截面面積的最小值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)是兩條不同的直線,是兩個不同的平面,則下列正確命題的序號
     
①.若  , 則   ;      ②.若,,則   ;
③. 若  ,則   ;      ④.若   ,,則  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

如圖,矩形與矩形所在的平面互相垂直,將沿翻折,翻折后的點E恰與BC上的點P重合.設(shè),,則當(dāng)__時,有最小值.

查看答案和解析>>

同步練習(xí)冊答案