【題目】設函數,其中.
(1)當時,求曲線在點處的切線方程;
(2)討論函數的單調性;
(3)當,且時證明不等式:
科目:高中數學 來源: 題型:
【題目】某小組共10人,利用假期參加義工活動,已知參加義工活動1次的有2人,2次的有4人,3次的有4人.現從這10人中隨機選出2人作為該組代表參加座談會.
(1)設為事件“選出的2人參加義工活動次數之和為4”,求事件發(fā)生的概率;
(2)設為選出的2人參加義工活動次數之差的絕對值,求隨機變量的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知長方形, , ,以的中點為原點,建立如圖所示的平面直角坐標系.
(1)求以為焦點,且過兩點的橢圓的標準方程;
(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠需要確定加工某大型零件所花費的時間,連續(xù)4天做了4次統(tǒng)計,得到的數據如下:
零件的個數(個) | 2 | 3 | 4 | 5 |
加工的時間(小時) | 2.5 | 3 | 4 | 5.5 |
(1)在直角坐標系中畫出以上數據的散點圖,求出關于的回歸方程,并在坐標系中畫出回歸直線;
(2)試預測加工10個零件需要多少時間?
參考公式:兩個具有線性關系的變量的一組數據:,
其回歸方程為,其中
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地高中年級學生某次身體素質體能測試的原始成績采用百分制,已知這些學生的原始成績均分布在內,發(fā)布成績使用等級制,各等級劃分標準見下表,并規(guī)定: 三級為合格, 級為不合格
為了了解該地高中年級學生身體素質情況,從中抽取了名學生的原始成績作為樣本進行統(tǒng)計,按照分組作出頻率分布直方圖如圖所示,樣本中分數在分及以上的所有數據的莖葉圖如圖所示.
(Ⅰ) 求及頻率分布直方圖中的值;
(Ⅱ) 根據統(tǒng)計思想方法,以事件發(fā)生的頻率作為相應事件發(fā)生的概率,若在該地高中學生中任選人,求至少有人成績是合格等級的概率;
(Ⅲ)上述容量為的樣本中,從兩個等級的學生中隨機抽取了名學生進行調研,記為所抽取的名學生中成績?yōu)?/span>等級的人數,求隨機變量的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(A)在直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的參數方程為 (為參數), 是曲線上的動點, 為線段的中點,設點的軌跡為曲線.
(1)求的坐標方程;
(2)若射線與曲線異于極點的交點為,與曲線異于極點的交點為,求.
(B)設函數.
(1)當時,求不等式的解集;
(2)對任意, 不等式恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產和兩種產品,按計劃每天生產各不得少于10噸,已知生產產品噸需要用煤9噸,電4度,勞動力3個(按工作日計算).生產產品1噸需要用煤4噸,電5度,勞動力10個,如果產品每噸價值7萬元, 產品每噸價值12萬元,而且每天用煤不超過300噸,用電不超過200度,勞動力最多只有300個,每天應安排生產兩種產品各多少才是合理的?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com